Spatio-temporal Analysis of Hydrological Drought at Catchment Scale Using a Spatially-distributed Hydrological Model

Vitali Diaz Mercado*, Gerald Corzo Perez, Dimitri Solomatine, Henny A.J. Van Lanen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paper

3 Citations (Scopus)

Abstract

Lately, drought is more intense and much more severe around the globe, causing more deaths than other hazards in the past century. Drought can be characterized quantitatively for its spatial extent, intensity and duration by using drought indicators. Several indicators have been developed in order to characterize drought, being the most widespread the Standardized Precipitation Index (SPI). Nevertheless, due to its known limitations, other indicators have been proposed. In this paper, evaporation and runoff simulations of a basin were used to evaluate the variation and performance of different meteorological and hydrological drought indicators in identifying drought. Daily simulations of evaporation and runoff were computed by using a distributed hydrological model of a catchment located in the southeast of Mexico. After calibration of the hydrological model, we calculated at different time steps the drought indicators: Standardized Precipitation Index (SPI), Standardized Precipitation Evaporation Index (SPEI), Evapotranspiration Deficit Index (ETDI), Standardized Evapotranspiration Deficit Index (SEDI) and Standardized Runoff Index (SRI). Furthermore, the so-called Non-Contiguous Drought Analysis (NCDA) was carried out to compare the skill of each indicator to identify drought. Results show that meteorological drought indicators do not identify all drought events for the time steps of 1 and 3 months. For 3-, 6- and 9-month time steps, meteorological drought indicators tend to identify the onset with a lag. For long-time steps of 12 and 24, the use of agricultural and hydrological droughts indicators is recommended, since these indicators can identify prolonged drought periods. The results suggest that for a better monitoring of drought in a catchment, it is important the joint evaluation and the use of not only meteorological drought indicators but also hydrological and agricultural ones, in order to identify drought events and their spatio-temporal evolution.

Original languageEnglish
Title of host publicationProcedia Engineering
PublisherElsevier Ltd, Academic Press
Pages738-744
DOIs
Publication statusPublished - 2016
Event12th International Conference on Hydroinformatics - Smart Water for the Future, HIC 2016 - Incheon, Korea, Republic of
Duration: 21 Aug 201626 Aug 2016

Publication series

NameProcedia Engineering
Volume154
ISSN (Print)1877-7058

Conference

Conference12th International Conference on Hydroinformatics - Smart Water for the Future, HIC 2016
CountryKorea, Republic of
CityIncheon
Period21/08/1626/08/16

    Fingerprint

Keywords

  • hydrological drought
  • non-contiguous drought analysis
  • standardized evapotranspiration deficit index

Cite this

Mercado, V. D., Perez, G. C., Solomatine, D., & Van Lanen, H. A. J. (2016). Spatio-temporal Analysis of Hydrological Drought at Catchment Scale Using a Spatially-distributed Hydrological Model. In Procedia Engineering (pp. 738-744). (Procedia Engineering; Vol. 154). Elsevier Ltd, Academic Press. https://doi.org/10.1016/j.proeng.2016.07.577