TY - JOUR
T1 - Source partitioning of H 2 O and CO 2 fluxes based on high-frequency eddy covariance data
T2 - A comparison between study sites
AU - Klosterhalfen, Anne
AU - Graf, Alexander
AU - Brüggemann, Nicolas
AU - Drüe, Clemens
AU - Esser, Odilia
AU - González-Dugo, María P.
AU - Heinemann, Günther
AU - Jacobs, Cor M.J.
AU - Mauder, Matthias
AU - Moene, Arnold F.
AU - Ney, Patrizia
AU - Pütz, Thomas
AU - Rebmann, Corinna
AU - Rodríguez, Mario Ramos
AU - Scanlon, Todd M.
AU - Schmidt, Marius
AU - Steinbrecher, Rainer
AU - Thomas, Christoph K.
AU - Valler, Veronika
AU - Zeeman, Matthias J.
AU - Vereecken, Harry
PY - 2019/3/19
Y1 - 2019/3/19
N2 - For an assessment of the roles of soil and vegetation in the climate system, a further understanding of the flux components of H 2 O and CO 2 (e.g., transpiration, soil respiration) and their interaction with physical conditions and physiological functioning of plants and ecosystems is necessary. To obtain magnitudes of these flux components, we applied source partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; TH08) to high-frequency eddy covariance measurements of 12 study sites covering different ecosystems (croplands, grasslands, and forests) in different climatic regions. Both partitioning methods are based on higher-order statistics of the H 2 O and CO 2 fluctuations, but proceed differently to estimate transpiration, evaporation, net primary production, and soil respiration. We compared and evaluated the partitioning results obtained with SK10 and TH08, including slight modifications of both approaches. Further, we analyzed the interrelations among the performance of the partitioning methods, turbulence characteristics, and site characteristics (such as plant cover type, canopy height, canopy density, and measurement height). We were able to identify characteristics of a data set that are prerequisites for adequate performance of the partitioning methods. SK10 had the tendency to overestimate and TH08 to underestimate soil flux components. For both methods, the partitioning of CO 2 fluxes was less robust than for H 2 O fluxes. Results derived with SK10 showed relatively large dependencies on estimated water use efficiency (WUE) at the leaf level, which is a required input. Measurements of outgoing longwave radiation used for the estimation of foliage temperature (used in WUE) could slightly increase the quality of the partitioning results. A modification of the TH08 approach, by applying a cluster analysis for the conditional sampling of respiration-evaporation events, performed satisfactorily, but did not result in significant advantages compared to the original method versions developed by Thomas et al. (2008). The performance of each partitioning approach was dependent on meteorological conditions, plant development, canopy height, canopy density, and measurement height. Foremost, the performance of SK10 correlated page1112 negatively with the ratio between measurement height and canopy height. The performance of TH08 was more dependent on canopy height and leaf area index. In general, all site characteristics that increase dissimilarities between scalars appeared to enhance partitioning performance for SK10 and TH08.
AB - For an assessment of the roles of soil and vegetation in the climate system, a further understanding of the flux components of H 2 O and CO 2 (e.g., transpiration, soil respiration) and their interaction with physical conditions and physiological functioning of plants and ecosystems is necessary. To obtain magnitudes of these flux components, we applied source partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; TH08) to high-frequency eddy covariance measurements of 12 study sites covering different ecosystems (croplands, grasslands, and forests) in different climatic regions. Both partitioning methods are based on higher-order statistics of the H 2 O and CO 2 fluctuations, but proceed differently to estimate transpiration, evaporation, net primary production, and soil respiration. We compared and evaluated the partitioning results obtained with SK10 and TH08, including slight modifications of both approaches. Further, we analyzed the interrelations among the performance of the partitioning methods, turbulence characteristics, and site characteristics (such as plant cover type, canopy height, canopy density, and measurement height). We were able to identify characteristics of a data set that are prerequisites for adequate performance of the partitioning methods. SK10 had the tendency to overestimate and TH08 to underestimate soil flux components. For both methods, the partitioning of CO 2 fluxes was less robust than for H 2 O fluxes. Results derived with SK10 showed relatively large dependencies on estimated water use efficiency (WUE) at the leaf level, which is a required input. Measurements of outgoing longwave radiation used for the estimation of foliage temperature (used in WUE) could slightly increase the quality of the partitioning results. A modification of the TH08 approach, by applying a cluster analysis for the conditional sampling of respiration-evaporation events, performed satisfactorily, but did not result in significant advantages compared to the original method versions developed by Thomas et al. (2008). The performance of each partitioning approach was dependent on meteorological conditions, plant development, canopy height, canopy density, and measurement height. Foremost, the performance of SK10 correlated page1112 negatively with the ratio between measurement height and canopy height. The performance of TH08 was more dependent on canopy height and leaf area index. In general, all site characteristics that increase dissimilarities between scalars appeared to enhance partitioning performance for SK10 and TH08.
U2 - 10.5194/bg-16-1111-2019
DO - 10.5194/bg-16-1111-2019
M3 - Article
AN - SCOPUS:85063188441
VL - 16
SP - 1111
EP - 1132
JO - Biogeosciences
JF - Biogeosciences
SN - 1726-4170
IS - 6
ER -