Soil organic carbon stocks and changes upon forest regeneration in East Kalimantan- Indonesia

I. Yassir

Research output: Thesisinternal PhD, WU

Abstract

Imperata grassland is a common vegetation type in Kalimantan (Indonesia), and other parts of South-East Asia. It indicates a high degree of degradation of the vegetation, and mostly occurs after slashing and burning of primary forest. Through secondary succession Imperata grassland is converted into new secondary forest and much of the original biodiversity is restored. The overall objective of the thesis was to study the regeneration of Imperata grasslands in East Kalimantan, and to measure the effects of regeneration on soil properties, with emphasis on the organic fraction. The research strategy was to compare plots of different regeneration stages, characterized by the period elapsed since the vegetation was last burned.
Results show that during regeneration of Imperata grasslands, both vegetation composition and soil properties change, including chemistry of soil organic matter. Soil carbon stocks are higher under Imperata grasslands than under primary forest, and increase further upon natural regeneration of grassland to secondary forest. Highest carbon stocks are found in the later regeneration phases. Lower carbon stocks under primary forests are due to extremely low fertility, combined with shallow soils and low root mass in the topsoil. Root density as observed in the field is much higher under the grass vegetation. Results show as well that soil organic matter decomposition is most advanced under forest, as indicated by lower amounts of plant derived compounds and higher contribution of microbial matter. The results indicate that decomposition efficiency is related to soil organic matter chemistry, but more to abundance of N-compounds than to that of potentially recalcitrant compounds.
In our case study, soil texture appears an important factor in the vegetation succession. On sandy soils, there is a strong increase with time of Pteridium aquilinum L., while the number of other species is lower. This slows down the development towards secondary forest. Canonical correspondence analysis (CCA) of environmental factors and vegetation show that pH, bulk density, sand and clay are the factors related to the distribution of species. The rapid secondary succession indicates that Imperata grasslands are not a final and stable stage of land degradation, but that frequent fires are necessary to maintain Imperata grasslands. If protected from fire and other intrusions such as shifting cultivation, Imperata grassland will readily develop into secondary forest. Imperata grasslands seem to be permanent because of human interference, especially through burning, and because so far few attempts have been made to sustainable rehabilitation.

Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Kabat, Pavel, Promotor
  • Buurman, Peter, Co-promotor
  • van Putten, Bram, Co-promotor
Award date4 Sep 2012
Place of PublicationS.l.
Publisher
Print ISBNs9789064645761
Publication statusPublished - 2012

Keywords

  • natural regeneration
  • tropical forests
  • imperata cylindrica
  • secondary forests
  • soil carbon sequestration
  • soil organic matter
  • soil properties
  • vegetation
  • ecological succession
  • kalimantan
  • indonesia

Fingerprint Dive into the research topics of 'Soil organic carbon stocks and changes upon forest regeneration in East Kalimantan- Indonesia'. Together they form a unique fingerprint.

  • Cite this