TY - JOUR
T1 - Soil N index enhancement by organic fertilizer application depends on aggregate size
AU - Hei, Zewen
AU - Shao, Jiayu
AU - Wilschut, Rutger A.
AU - Niu, Yuxuan
AU - Hao, Shenglei
AU - Zhang, Hongyan
AU - Kammenga, Jan
AU - Chen, Yongliang
AU - Geisen, Stefan
PY - 2025/8/1
Y1 - 2025/8/1
N2 - Nitrogen (N) is the major limiting nutrient determining yield and quality of crops. Many factors related to the N cycle jointly determine its overall functioning and plant uptake. However, the effects of fertilizer types on the soil N cycle in different soil aggregate fractions remain elusive. We developed a soil N index consisting of N substrates, N drivers and N processes to more systematically understand the overall soil N cycle. We used the N index to evaluate the effects of fertilizer types (organic vs. mineral) and application rates in three fractions of soil aggregates. Compared to mineral fertilizer application, organic fertilizer application increased the soil N index by 0.41–0.17 in microaggregates, but not in large and small macroaggregates. Higher rates of organic or mineral fertilizer application also increased the soil N index by 0.50–0.74 in microaggregates but not in large and small macroaggregates. In the low mineral fertilizer treatment, the soil N index in large and small macroaggregates was respectively 0.52 and 0.74 higher than in microaggregates. We conclude that organic fertilizer application and high fertilizer application rates boost the soil N index, which depends on aggregate size. Our study indicates that examining soil within microaggregates may be crucial for understanding functional changes in the soil N cycle.
AB - Nitrogen (N) is the major limiting nutrient determining yield and quality of crops. Many factors related to the N cycle jointly determine its overall functioning and plant uptake. However, the effects of fertilizer types on the soil N cycle in different soil aggregate fractions remain elusive. We developed a soil N index consisting of N substrates, N drivers and N processes to more systematically understand the overall soil N cycle. We used the N index to evaluate the effects of fertilizer types (organic vs. mineral) and application rates in three fractions of soil aggregates. Compared to mineral fertilizer application, organic fertilizer application increased the soil N index by 0.41–0.17 in microaggregates, but not in large and small macroaggregates. Higher rates of organic or mineral fertilizer application also increased the soil N index by 0.50–0.74 in microaggregates but not in large and small macroaggregates. In the low mineral fertilizer treatment, the soil N index in large and small macroaggregates was respectively 0.52 and 0.74 higher than in microaggregates. We conclude that organic fertilizer application and high fertilizer application rates boost the soil N index, which depends on aggregate size. Our study indicates that examining soil within microaggregates may be crucial for understanding functional changes in the soil N cycle.
U2 - 10.1016/j.apsoil.2025.106166
DO - 10.1016/j.apsoil.2025.106166
M3 - Article
SN - 0929-1393
VL - 212
JO - Applied Soil Ecology
JF - Applied Soil Ecology
M1 - 106166
ER -