Soil microbial community structure of range-expanding plant species differs from co-occurring natives

W.E. Morriën, W.H. van der Putten

Research output: Contribution to journalArticleAcademicpeer-review

24 Citations (Scopus)

Abstract

1. Due to global warming and other changes in the environment, many native and exotic plant species show range expansion from lower to higher latitudes. In the new range, the (in)ability of range-expanding plants to establish associations with local soil microbes can have important consequences for plant abundance; however, very little information exists on rhizosphere communities of range-expanding plant species. Here, we examine the rhizosphere microbial community composition of range-expanding plant species in comparison with phylogenetically related species that are native in the invaded range. 2. We tested the hypothesis that range-expanding plants species would promote fewer shifts in rhizosphere communities than congeneric natives would. In order to test this, soil was collected from the invaded habitat and six range-expanding and nine congeneric natives were planted individually in pots to condition soil microbial communities. 3. After harvesting, individuals of the same species were planted in conditioned own and control soils to test the legacy effects of soil conditioning on biomass production. The control soils were mixtures of soils conditioned by all other plant species, except congenerics. After 10 weeks of plant growth, we determined the rhizosphere community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF) and Fusarium spp. 4. All groups of microbes were analysed qualitatively using denaturating gradient gel electrophoresis (DGGE). Ergosterol was determined as a quantitative measure of nonarbuscular mycorrhizal fungal biomass, and real-time PCR was applied to detect amounts of Fusarium spp. 5. Range-expanding plants had less fungal hyphal biomass and lower amounts of Fusarium spp. in the rhizosphere than congenerics. Bacterial community composition was influenced by a combination of soil conditioning and plant origin, whereas fungal communities, AMF and Fusarium spp. were less pronounced in their responses to the experimental treatments. 6. Synthesis. We conclude that the lack of legacy effects in range-expanding plant species compared with natives may be due to differences in bacterial rhizosphere community composition, or to different quantities of potential pathogenic fungi. If the range-expanding plant species were benefiting more from AMF, effects will not have been due to differences in community composition, but we cannot exclude other options, such as different effectiveness of AMF or other soil biota in the rhizosphere of range-expanding vs. native plant species. The greater accumulation of bacterial and fungal pathogens in the rhizosphere of natives in relation to range expanders might explain the successful establishment of range-expanding plants.
LanguageEnglish
Pages1093-1102
JournalJournal of Ecology
Volume101
Issue number5
DOIs
Publication statusPublished - 2013

Fingerprint

microbial communities
rhizosphere
microbial community
community structure
community composition
fungus
soil
Fusarium
mycorrhizal fungi
conditioning
biomass
ergosterol
soil biota
plant species
soil test
range expansion
global warming
electrokinesis
gel
pathogen

Keywords

  • gradient gel-electrophoresis
  • arbuscular mycorrhizal fungi
  • 16s ribosomal-rna
  • climate-change
  • litter decomposition
  • invasive plants
  • rhizosphere
  • diversity
  • ergosterol
  • feedback

Cite this

@article{62ca17f3c65c490381ab02790ec6f8ff,
title = "Soil microbial community structure of range-expanding plant species differs from co-occurring natives",
abstract = "1. Due to global warming and other changes in the environment, many native and exotic plant species show range expansion from lower to higher latitudes. In the new range, the (in)ability of range-expanding plants to establish associations with local soil microbes can have important consequences for plant abundance; however, very little information exists on rhizosphere communities of range-expanding plant species. Here, we examine the rhizosphere microbial community composition of range-expanding plant species in comparison with phylogenetically related species that are native in the invaded range. 2. We tested the hypothesis that range-expanding plants species would promote fewer shifts in rhizosphere communities than congeneric natives would. In order to test this, soil was collected from the invaded habitat and six range-expanding and nine congeneric natives were planted individually in pots to condition soil microbial communities. 3. After harvesting, individuals of the same species were planted in conditioned own and control soils to test the legacy effects of soil conditioning on biomass production. The control soils were mixtures of soils conditioned by all other plant species, except congenerics. After 10 weeks of plant growth, we determined the rhizosphere community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF) and Fusarium spp. 4. All groups of microbes were analysed qualitatively using denaturating gradient gel electrophoresis (DGGE). Ergosterol was determined as a quantitative measure of nonarbuscular mycorrhizal fungal biomass, and real-time PCR was applied to detect amounts of Fusarium spp. 5. Range-expanding plants had less fungal hyphal biomass and lower amounts of Fusarium spp. in the rhizosphere than congenerics. Bacterial community composition was influenced by a combination of soil conditioning and plant origin, whereas fungal communities, AMF and Fusarium spp. were less pronounced in their responses to the experimental treatments. 6. Synthesis. We conclude that the lack of legacy effects in range-expanding plant species compared with natives may be due to differences in bacterial rhizosphere community composition, or to different quantities of potential pathogenic fungi. If the range-expanding plant species were benefiting more from AMF, effects will not have been due to differences in community composition, but we cannot exclude other options, such as different effectiveness of AMF or other soil biota in the rhizosphere of range-expanding vs. native plant species. The greater accumulation of bacterial and fungal pathogens in the rhizosphere of natives in relation to range expanders might explain the successful establishment of range-expanding plants.",
keywords = "gradient gel-electrophoresis, arbuscular mycorrhizal fungi, 16s ribosomal-rna, climate-change, litter decomposition, invasive plants, rhizosphere, diversity, ergosterol, feedback",
author = "W.E. Morri{\"e}n and {van der Putten}, W.H.",
year = "2013",
doi = "10.1111/1365-2745.12117",
language = "English",
volume = "101",
pages = "1093--1102",
journal = "Journal of Ecology",
issn = "0022-0477",
publisher = "Wiley",
number = "5",

}

Soil microbial community structure of range-expanding plant species differs from co-occurring natives. / Morriën, W.E.; van der Putten, W.H.

In: Journal of Ecology, Vol. 101, No. 5, 2013, p. 1093-1102.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Soil microbial community structure of range-expanding plant species differs from co-occurring natives

AU - Morriën, W.E.

AU - van der Putten, W.H.

PY - 2013

Y1 - 2013

N2 - 1. Due to global warming and other changes in the environment, many native and exotic plant species show range expansion from lower to higher latitudes. In the new range, the (in)ability of range-expanding plants to establish associations with local soil microbes can have important consequences for plant abundance; however, very little information exists on rhizosphere communities of range-expanding plant species. Here, we examine the rhizosphere microbial community composition of range-expanding plant species in comparison with phylogenetically related species that are native in the invaded range. 2. We tested the hypothesis that range-expanding plants species would promote fewer shifts in rhizosphere communities than congeneric natives would. In order to test this, soil was collected from the invaded habitat and six range-expanding and nine congeneric natives were planted individually in pots to condition soil microbial communities. 3. After harvesting, individuals of the same species were planted in conditioned own and control soils to test the legacy effects of soil conditioning on biomass production. The control soils were mixtures of soils conditioned by all other plant species, except congenerics. After 10 weeks of plant growth, we determined the rhizosphere community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF) and Fusarium spp. 4. All groups of microbes were analysed qualitatively using denaturating gradient gel electrophoresis (DGGE). Ergosterol was determined as a quantitative measure of nonarbuscular mycorrhizal fungal biomass, and real-time PCR was applied to detect amounts of Fusarium spp. 5. Range-expanding plants had less fungal hyphal biomass and lower amounts of Fusarium spp. in the rhizosphere than congenerics. Bacterial community composition was influenced by a combination of soil conditioning and plant origin, whereas fungal communities, AMF and Fusarium spp. were less pronounced in their responses to the experimental treatments. 6. Synthesis. We conclude that the lack of legacy effects in range-expanding plant species compared with natives may be due to differences in bacterial rhizosphere community composition, or to different quantities of potential pathogenic fungi. If the range-expanding plant species were benefiting more from AMF, effects will not have been due to differences in community composition, but we cannot exclude other options, such as different effectiveness of AMF or other soil biota in the rhizosphere of range-expanding vs. native plant species. The greater accumulation of bacterial and fungal pathogens in the rhizosphere of natives in relation to range expanders might explain the successful establishment of range-expanding plants.

AB - 1. Due to global warming and other changes in the environment, many native and exotic plant species show range expansion from lower to higher latitudes. In the new range, the (in)ability of range-expanding plants to establish associations with local soil microbes can have important consequences for plant abundance; however, very little information exists on rhizosphere communities of range-expanding plant species. Here, we examine the rhizosphere microbial community composition of range-expanding plant species in comparison with phylogenetically related species that are native in the invaded range. 2. We tested the hypothesis that range-expanding plants species would promote fewer shifts in rhizosphere communities than congeneric natives would. In order to test this, soil was collected from the invaded habitat and six range-expanding and nine congeneric natives were planted individually in pots to condition soil microbial communities. 3. After harvesting, individuals of the same species were planted in conditioned own and control soils to test the legacy effects of soil conditioning on biomass production. The control soils were mixtures of soils conditioned by all other plant species, except congenerics. After 10 weeks of plant growth, we determined the rhizosphere community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF) and Fusarium spp. 4. All groups of microbes were analysed qualitatively using denaturating gradient gel electrophoresis (DGGE). Ergosterol was determined as a quantitative measure of nonarbuscular mycorrhizal fungal biomass, and real-time PCR was applied to detect amounts of Fusarium spp. 5. Range-expanding plants had less fungal hyphal biomass and lower amounts of Fusarium spp. in the rhizosphere than congenerics. Bacterial community composition was influenced by a combination of soil conditioning and plant origin, whereas fungal communities, AMF and Fusarium spp. were less pronounced in their responses to the experimental treatments. 6. Synthesis. We conclude that the lack of legacy effects in range-expanding plant species compared with natives may be due to differences in bacterial rhizosphere community composition, or to different quantities of potential pathogenic fungi. If the range-expanding plant species were benefiting more from AMF, effects will not have been due to differences in community composition, but we cannot exclude other options, such as different effectiveness of AMF or other soil biota in the rhizosphere of range-expanding vs. native plant species. The greater accumulation of bacterial and fungal pathogens in the rhizosphere of natives in relation to range expanders might explain the successful establishment of range-expanding plants.

KW - gradient gel-electrophoresis

KW - arbuscular mycorrhizal fungi

KW - 16s ribosomal-rna

KW - climate-change

KW - litter decomposition

KW - invasive plants

KW - rhizosphere

KW - diversity

KW - ergosterol

KW - feedback

U2 - 10.1111/1365-2745.12117

DO - 10.1111/1365-2745.12117

M3 - Article

VL - 101

SP - 1093

EP - 1102

JO - Journal of Ecology

T2 - Journal of Ecology

JF - Journal of Ecology

SN - 0022-0477

IS - 5

ER -