TY - JOUR
T1 - Soil ecology and ecosystem services of dairy and semi-natural grasslands on peat
AU - Deru, Joachim G.C.
AU - Bloem, Jaap
AU - de Goede, Ron
AU - Keidel, Harm
AU - Kloen, Henk
AU - Rutgers, Michiel
AU - van den Akker, Jan
AU - Brussaard, Lijbert
AU - van Eekeren, Nick
PY - 2018/4
Y1 - 2018/4
N2 - Peat wetlands are of major importance for ecosystem services such as carbon storage, water regulation and maintenance of biodiversity. However, peat drainage for farming leads to CO2 emission, soil subsidence and biodiversity losses. In the peat areas in the Netherlands, solutions are sought in reducing drainage, adapting farming to wetter soils, and converting productive dairy grasslands to less intensively managed semi-natural grasslands. Our objective was to compare the soil ecology and related ecosystem services of dairy and semi-natural grasslands on peat soils (Terric Histosols). Soil biotic and abiotic parameters were measured in twenty dairy and twenty semi-natural sites, with particular focus on (i) soil faunal diversity (ecosystem service "maintenance of biodiversity"), (ii) CO2 emission ("climate regulation"), (iii) water infiltration ("water regulation") and (iv) soil fertility ("grass production"). Mean soil faunal taxonomic richness per site (alpha diversity) was higher in dairy grasslands compared to semi-natural grasslands. However, the total observed number of taxa (gamma diversity) in dairy grassland was 13% lower for soil fauna and 21% lower when including plant species. Potential C mineralization rate in the topsoil - used as a proxy for CO2 emission - was not influenced by land use but was limited by drought. Additionally, potential C mineralization depended on different C sources and microbial groups in the two grassland types. Water infiltration rate differed by a factor of five between land use types (dairy > semi-natural), and correlated with soil porosity. As expected, soil fertility was higher in dairy than in semi-natural grasslands. However, potential N mineralization was similar in dairy and semi-natural grasslands and was correlated negatively with bacterial biomass apparently indicating N immobilization, and positively with bacterial growth that depended on labile C and N in soil. Our study on peat soils shows that dairy versus semi-natural grassland use influences biodiversity, climate regulation, water regulation and (potential for) grassland production. We conclude with recommendations for land management to optimize the delivery of those ecosystem services.
AB - Peat wetlands are of major importance for ecosystem services such as carbon storage, water regulation and maintenance of biodiversity. However, peat drainage for farming leads to CO2 emission, soil subsidence and biodiversity losses. In the peat areas in the Netherlands, solutions are sought in reducing drainage, adapting farming to wetter soils, and converting productive dairy grasslands to less intensively managed semi-natural grasslands. Our objective was to compare the soil ecology and related ecosystem services of dairy and semi-natural grasslands on peat soils (Terric Histosols). Soil biotic and abiotic parameters were measured in twenty dairy and twenty semi-natural sites, with particular focus on (i) soil faunal diversity (ecosystem service "maintenance of biodiversity"), (ii) CO2 emission ("climate regulation"), (iii) water infiltration ("water regulation") and (iv) soil fertility ("grass production"). Mean soil faunal taxonomic richness per site (alpha diversity) was higher in dairy grasslands compared to semi-natural grasslands. However, the total observed number of taxa (gamma diversity) in dairy grassland was 13% lower for soil fauna and 21% lower when including plant species. Potential C mineralization rate in the topsoil - used as a proxy for CO2 emission - was not influenced by land use but was limited by drought. Additionally, potential C mineralization depended on different C sources and microbial groups in the two grassland types. Water infiltration rate differed by a factor of five between land use types (dairy > semi-natural), and correlated with soil porosity. As expected, soil fertility was higher in dairy than in semi-natural grasslands. However, potential N mineralization was similar in dairy and semi-natural grasslands and was correlated negatively with bacterial biomass apparently indicating N immobilization, and positively with bacterial growth that depended on labile C and N in soil. Our study on peat soils shows that dairy versus semi-natural grassland use influences biodiversity, climate regulation, water regulation and (potential for) grassland production. We conclude with recommendations for land management to optimize the delivery of those ecosystem services.
KW - Biodiversity
KW - C mineralization
KW - Grassland
KW - Histosols
KW - N mineralization
KW - Water infiltration
U2 - 10.1016/j.apsoil.2017.12.011
DO - 10.1016/j.apsoil.2017.12.011
M3 - Article
AN - SCOPUS:85038946762
SN - 0929-1393
VL - 125
SP - 26
EP - 34
JO - Applied Soil Ecology
JF - Applied Soil Ecology
ER -