Socio-economic data analysis with scan statistics and self-organizing maps

Devis Tuia*, Christian Kaiser, Antonio Da Cunha, Mikhail Kanevski

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paper

1 Citation (Scopus)


Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of the cantons of Vaud and Geneva in Western Switzerland. The unsupervised classification method, based on Ward's classification and self-organized maps, is used to classify the municipalities of the region and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape of the region. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of activities. The method is applied to the distribution of business managers and working class at the intra-urban scale. Results show the effect of peri-urbanization of the region and can be analyzed in both transportation and social terms.

Original languageEnglish
Title of host publicationComputational Science and Its Applications - ICCSA 2008 - International Conference, Proceedings
Number of pages13
EditionPART 1
Publication statusPublished - 27 Oct 2008
Externally publishedYes
EventInternational Conference on Computational Science and Its Applications, ICCSA 2008 - Perugia, Italy
Duration: 30 Jun 20083 Jul 2008

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume5072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


ConferenceInternational Conference on Computational Science and Its Applications, ICCSA 2008

Fingerprint Dive into the research topics of 'Socio-economic data analysis with scan statistics and self-organizing maps'. Together they form a unique fingerprint.

Cite this