Single cell swimming dynamics of Listeria monocytogenes using a nanoporous microfluidic platform

Evan Wright, Suresh Neethirajan*, Keith Warriner, Scott Retterer, Bernadeta Srijanto

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)


Listeria monocytogenes remains a significant foodborne pathogen due to its virulence and ability to become established in food processing facilities. The pathogen is characterized by its ability to grow over a wide temperature range and withstand a broad range of stresses. The following reports on the chemotaxis and motility of the L. monocytogenes when exposed to relatively small concentrations of acetic acid. Using the developed nanoporous microfluidic device to precisely modulate the cellular environment, we exposed the individual Listeria cells to acetic acid and, in real time and with high resolution, observed how the cells reacted to the change in their surroundings. Our results showed that concentrations of acetic acid below 10 mM had very little, if any, effect on the motility. However, when exposed to 100 mM acetic acid, the cells exhibited a sharp drop in velocity and displayed a more random pattern of motion. These results indicate that at appropriate concentrations, acetic acid has the ability to disable the flagellum of the cells, thus impairing their motility. This drop in motility has numerous effects on the cell; its main effects being the obstruction of the cell's ability to properly form biofilms and a reduction in the overall infectivity of the cells. Since these characteristics are especially useful in controlling the proliferation of L. monocytogenes, acetic acid shows potential for application in the food industry as an active compound in designing a food packaging environment and as an antimicrobial agent.

Original languageEnglish
Pages (from-to)938-946
Number of pages9
JournalLab on a Chip
Issue number5
Publication statusPublished - 7 Mar 2014
Externally publishedYes

Fingerprint Dive into the research topics of 'Single cell swimming dynamics of Listeria monocytogenes using a nanoporous microfluidic platform'. Together they form a unique fingerprint.

Cite this