Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation

Research output: Contribution to journalArticleAcademicpeer-review

110 Citations (Scopus)


Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional–structural plant model, which integrates plant architecture with key plant processes.
Original languageEnglish
Pages (from-to)2203-2216
JournalJournal of Experimental Botany
Issue number8
Publication statusPublished - 2010


  • far-red ratio
  • triticum-aestivum
  • spring wheat
  • architectural model
  • c-3 photosynthesis
  • plant architecture
  • biochemical-model
  • winter-wheat
  • light
  • morphogenesis


Dive into the research topics of 'Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation'. Together they form a unique fingerprint.

Cite this