Short-time variability in scalar structure parameters

F. Bosveld, P. Baas, G.J. Steeneveld, A.A.M. Holtslag

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademic

Abstract

For the third GEWEX Atmospheric Boundary Layer Study (GABLS) a case with realistic geostrophic forcings and dynamical tendencies has been set up to study the diurnal cycle over land such that a quantitative comparison with observations is possible. Emphasis is given to the stable boundary layer. The case has been selected from the Cabauw data archive and shows a clear decoupling at sunset, a well-defined inertial oscillation resulting in a low-level jet during the subsequent night, and a well-defined morning time transition. In total 18 state of the art single column models from various research groups participated in the intercomparison study. Comparison of the model results shows a large variation in night time minimum temperature. In fact, most of the models attain lower temperatures than observed. Also a large variation in wind speed maximum at 200 m is observed. All models underestimate this wind maximum. At previous BLT and other meetings we already introduced the set-up of the case and the variations in model results. In order to explain the relatively large differences among model results, here our aim is to unravel the interactions between the dominant processes in this stable boundary layer, i.e. turbulent mixing, radiation and coupling to the land surface. To start with, a characterization of the models has been made in terms of these three dominant processes. We show that relations can be found between parameters that define the strength of each process relatively independent from the other processes. Subsequently, we study the parameters that are the net result of the interacting between the processes, like 2 m temperature, 200 m wind and boundary-layer height. By using the model characterizations and by using sensitivity runs of one model, we are able to quantify the relative importance of each process in determining the behavior of these parameters. For example, it is shown that variation in the coupling of the boundary layer to the land surface among the models plays a larger role than the spread in turbulent mixing efficiency in explaining the observed spread in 2m minimum temperature.
Original languageEnglish
Title of host publication20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA)
Place of PublicationBoston
PublisherAmerican Meteorological Society
Pages1.5
Publication statusPublished - 2012
Event20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction - Boston, United States
Duration: 9 Jul 201213 Jul 2012

Conference

Conference20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction
CountryUnited States
CityBoston
Period9/07/1213/07/12

Fingerprint

boundary layer
turbulent mixing
land surface
parameter
temperature
wind velocity
oscillation
comparison

Cite this

Bosveld, F., Baas, P., Steeneveld, G. J., & Holtslag, A. A. M. (2012). Short-time variability in scalar structure parameters. In 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA) (pp. 1.5). Boston: American Meteorological Society.
Bosveld, F. ; Baas, P. ; Steeneveld, G.J. ; Holtslag, A.A.M. / Short-time variability in scalar structure parameters. 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). Boston : American Meteorological Society, 2012. pp. 1.5
@inproceedings{6eea71f1ec974f749f16c44b16aeb52a,
title = "Short-time variability in scalar structure parameters",
abstract = "For the third GEWEX Atmospheric Boundary Layer Study (GABLS) a case with realistic geostrophic forcings and dynamical tendencies has been set up to study the diurnal cycle over land such that a quantitative comparison with observations is possible. Emphasis is given to the stable boundary layer. The case has been selected from the Cabauw data archive and shows a clear decoupling at sunset, a well-defined inertial oscillation resulting in a low-level jet during the subsequent night, and a well-defined morning time transition. In total 18 state of the art single column models from various research groups participated in the intercomparison study. Comparison of the model results shows a large variation in night time minimum temperature. In fact, most of the models attain lower temperatures than observed. Also a large variation in wind speed maximum at 200 m is observed. All models underestimate this wind maximum. At previous BLT and other meetings we already introduced the set-up of the case and the variations in model results. In order to explain the relatively large differences among model results, here our aim is to unravel the interactions between the dominant processes in this stable boundary layer, i.e. turbulent mixing, radiation and coupling to the land surface. To start with, a characterization of the models has been made in terms of these three dominant processes. We show that relations can be found between parameters that define the strength of each process relatively independent from the other processes. Subsequently, we study the parameters that are the net result of the interacting between the processes, like 2 m temperature, 200 m wind and boundary-layer height. By using the model characterizations and by using sensitivity runs of one model, we are able to quantify the relative importance of each process in determining the behavior of these parameters. For example, it is shown that variation in the coupling of the boundary layer to the land surface among the models plays a larger role than the spread in turbulent mixing efficiency in explaining the observed spread in 2m minimum temperature.",
author = "F. Bosveld and P. Baas and G.J. Steeneveld and A.A.M. Holtslag",
note = "recorded presentation: https://ams.confex.com/ams/20BLT18AirSea/flvgateway.cgi/id/21937?recordingid=21937",
year = "2012",
language = "English",
pages = "1.5",
booktitle = "20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA)",
publisher = "American Meteorological Society",
address = "United States",

}

Bosveld, F, Baas, P, Steeneveld, GJ & Holtslag, AAM 2012, Short-time variability in scalar structure parameters. in 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). American Meteorological Society, Boston, pp. 1.5, 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, Boston, United States, 9/07/12.

Short-time variability in scalar structure parameters. / Bosveld, F.; Baas, P.; Steeneveld, G.J.; Holtslag, A.A.M.

20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). Boston : American Meteorological Society, 2012. p. 1.5.

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademic

TY - GEN

T1 - Short-time variability in scalar structure parameters

AU - Bosveld, F.

AU - Baas, P.

AU - Steeneveld, G.J.

AU - Holtslag, A.A.M.

N1 - recorded presentation: https://ams.confex.com/ams/20BLT18AirSea/flvgateway.cgi/id/21937?recordingid=21937

PY - 2012

Y1 - 2012

N2 - For the third GEWEX Atmospheric Boundary Layer Study (GABLS) a case with realistic geostrophic forcings and dynamical tendencies has been set up to study the diurnal cycle over land such that a quantitative comparison with observations is possible. Emphasis is given to the stable boundary layer. The case has been selected from the Cabauw data archive and shows a clear decoupling at sunset, a well-defined inertial oscillation resulting in a low-level jet during the subsequent night, and a well-defined morning time transition. In total 18 state of the art single column models from various research groups participated in the intercomparison study. Comparison of the model results shows a large variation in night time minimum temperature. In fact, most of the models attain lower temperatures than observed. Also a large variation in wind speed maximum at 200 m is observed. All models underestimate this wind maximum. At previous BLT and other meetings we already introduced the set-up of the case and the variations in model results. In order to explain the relatively large differences among model results, here our aim is to unravel the interactions between the dominant processes in this stable boundary layer, i.e. turbulent mixing, radiation and coupling to the land surface. To start with, a characterization of the models has been made in terms of these three dominant processes. We show that relations can be found between parameters that define the strength of each process relatively independent from the other processes. Subsequently, we study the parameters that are the net result of the interacting between the processes, like 2 m temperature, 200 m wind and boundary-layer height. By using the model characterizations and by using sensitivity runs of one model, we are able to quantify the relative importance of each process in determining the behavior of these parameters. For example, it is shown that variation in the coupling of the boundary layer to the land surface among the models plays a larger role than the spread in turbulent mixing efficiency in explaining the observed spread in 2m minimum temperature.

AB - For the third GEWEX Atmospheric Boundary Layer Study (GABLS) a case with realistic geostrophic forcings and dynamical tendencies has been set up to study the diurnal cycle over land such that a quantitative comparison with observations is possible. Emphasis is given to the stable boundary layer. The case has been selected from the Cabauw data archive and shows a clear decoupling at sunset, a well-defined inertial oscillation resulting in a low-level jet during the subsequent night, and a well-defined morning time transition. In total 18 state of the art single column models from various research groups participated in the intercomparison study. Comparison of the model results shows a large variation in night time minimum temperature. In fact, most of the models attain lower temperatures than observed. Also a large variation in wind speed maximum at 200 m is observed. All models underestimate this wind maximum. At previous BLT and other meetings we already introduced the set-up of the case and the variations in model results. In order to explain the relatively large differences among model results, here our aim is to unravel the interactions between the dominant processes in this stable boundary layer, i.e. turbulent mixing, radiation and coupling to the land surface. To start with, a characterization of the models has been made in terms of these three dominant processes. We show that relations can be found between parameters that define the strength of each process relatively independent from the other processes. Subsequently, we study the parameters that are the net result of the interacting between the processes, like 2 m temperature, 200 m wind and boundary-layer height. By using the model characterizations and by using sensitivity runs of one model, we are able to quantify the relative importance of each process in determining the behavior of these parameters. For example, it is shown that variation in the coupling of the boundary layer to the land surface among the models plays a larger role than the spread in turbulent mixing efficiency in explaining the observed spread in 2m minimum temperature.

M3 - Conference paper

SP - 1.5

BT - 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA)

PB - American Meteorological Society

CY - Boston

ER -

Bosveld F, Baas P, Steeneveld GJ, Holtslag AAM. Short-time variability in scalar structure parameters. In 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). Boston: American Meteorological Society. 2012. p. 1.5