Abstract
Small water systems are important hotspots of greenhouse gas (GHG) emission, but estimates are poorly constrained as data are scarce. Small ponds are often constructed in urban areas, where they receive large amounts
of nutrients and therefore tend to be highly productive. Here, we investigated GHG emissions, seasonal and diel
variation, and net ecosystem production (NEP) from an urban pond. In monthly 24-h field campaigns during
11 months, diffusive water–atmosphere methane (CH4) and carbon dioxide (CO2) fluxes and CH4 ebullition
and oxidation were quantified. With oxygen (O2) measurements, NEP was assessed. The pond was a net GHG
source the entire year, with an emission of 3.4 kg CO2 eq m−2 yr−1
. The dominant GHG emission pathway was
CH4 ebullition (bubble flux, 50%), followed by diffusive emissions of CO2 (38%) and CH4 (12%). Sediment CH4
release was primarily driven by temperature and especially ebullition increased exponentially above a temperature threshold of 15C. The pond’s atmospheric CO2 exchange was not related to NEP or temperature but likely
to a high allochthonous carbon (C) input via runoff and anaerobic mineralization of C. We expect urban ponds
to show a large increase in GHG emission with increasing temperature, which should be considered carefully
when constructing ponds in urban areas. Emissions may partly be counteracted by pond management focusing
on a reduction of nutrient and organic matter input.
of nutrients and therefore tend to be highly productive. Here, we investigated GHG emissions, seasonal and diel
variation, and net ecosystem production (NEP) from an urban pond. In monthly 24-h field campaigns during
11 months, diffusive water–atmosphere methane (CH4) and carbon dioxide (CO2) fluxes and CH4 ebullition
and oxidation were quantified. With oxygen (O2) measurements, NEP was assessed. The pond was a net GHG
source the entire year, with an emission of 3.4 kg CO2 eq m−2 yr−1
. The dominant GHG emission pathway was
CH4 ebullition (bubble flux, 50%), followed by diffusive emissions of CO2 (38%) and CH4 (12%). Sediment CH4
release was primarily driven by temperature and especially ebullition increased exponentially above a temperature threshold of 15C. The pond’s atmospheric CO2 exchange was not related to NEP or temperature but likely
to a high allochthonous carbon (C) input via runoff and anaerobic mineralization of C. We expect urban ponds
to show a large increase in GHG emission with increasing temperature, which should be considered carefully
when constructing ponds in urban areas. Emissions may partly be counteracted by pond management focusing
on a reduction of nutrient and organic matter input.
Original language | English |
---|---|
Pages (from-to) | 2129-2139 |
Journal | Limnology and Oceanography |
Volume | 64 |
Issue number | 5 |
Early online date | 18 Apr 2019 |
DOIs | |
Publication status | Published - Sept 2019 |