Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh)

F. Costa, S. Stella, W.E. van de Weg, W. Guerra, M. Cecchinel, J. Dallavia, B. Koller, S. Sansavini

    Research output: Contribution to journalArticleAcademicpeer-review

    108 Citations (Scopus)

    Abstract

    Shelf life determines the economic life time of mature apples, which can be either freshly harvested or stored. Good shelf life is highly associated with a slow decrease of fruit firmness at room temperature. Apple is a climacteric fruit, in which loss of firmness seems to be physiologically related to ethylene. Ethylenes biosynthetic pathway is controlled by two large gene families coding for 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxydase (ACO). In this study, one ACS and one ACO gene were examined for their effect on ethylene production and shelf life in apple using gene specific molecular marker, and have also been positioned on a molecular marker linkage map. The ACO marker was developed in this research and mapped on linkage group (LG) 10 of the crosses Prima × Fiesta and Fuji × Mondial Gala, within the 5% border of a previously identified fruit firmness QTL [Theor Appl Genet 100 (2000) 1074]. We denoted this locus as Md-ACO1. In addition, we mapped the previously developed Md-ACS1 marker [Theor Appl Genet 101 (2000) 742] on LG15. Studies on the cross Fuji × Braeburn revealed that Md-ACS1 and Md-ACO1 independently affect the internal ethylene concentration (IEC) as well as shelf life of apple, Md-ACS1 having the strongest effect. Descendants homozygous for Md-ACS1-2 and Md-ACO1-1 showed to have the lowest ethylene production as well as superior shelf-life. These two genes are candidates to be included in marker assisted breeding
    Original languageEnglish
    Pages (from-to)181-190
    JournalEuphytica
    Volume141
    Issue number1-2
    DOIs
    Publication statusPublished - 2005

    Keywords

    • 1-aminocyclopropane-1-carboxylate synthase
    • pumila mill.
    • fruit
    • expression
    • biosynthesis
    • tomato
    • oxidase
    • allele
    • plants

    Fingerprint Dive into the research topics of 'Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh)'. Together they form a unique fingerprint.

  • Cite this

    Costa, F., Stella, S., van de Weg, W. E., Guerra, W., Cecchinel, M., Dallavia, J., Koller, B., & Sansavini, S. (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica, 141(1-2), 181-190. https://doi.org/10.1007/s10681-005-6805-4