Role of residual layer and large-scale phenomena on the evolution of the boundary layer

E. Blay, D. Pino, J. Vilà-Guerau de Arellano, A. van de Boer, O. de Coster, I. Faloona, O. Garrouste, O.K. Hartogensis

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademic

Abstract

Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed. Continuous measurements made by several remote sensing and in situ instruments in combination with radiosoundings, and measurements done by unmanned aerial vehicles and an aircraft probed the vertical structure and the temporal evolution of the boundary layer. Mixed layer theory (Tennekes and Driedonks, 1981) and the Dutch Atmospheric Large-Eddy Simulation model (DALES, Heus et al., 2011) are set to reproduce and analyze the dynamics of the atmosphere during these two days. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the model runs are inspired by the observations taken at the two supersites that concentrated most of the instrumentation during the campaign. For DALES the initial profile (at 7 UTC on 1st July and 5 UTC on 2nd July) takes into account the existence of a residual layer above the nocturnal stable layer observed during the early morning. The mixed layer model is initialized when a well-developed convective boundary layer was observed, from 10 UTC. Due to the surface heterogeneity of the area, the models were run separately to analyze the boundary layer conditions at the two different supersites. First, the research focuses on the role-played by the residual layer (RL) on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night to the development of the boundary layer at the morning. DALES, which takes into account the residual layer, is capable to model the observed sudden increase of the boundary layer depth and of the potential temperature occurred during the morning transition. There are different sources, which can be the responsible of the overshooting for instance surface and entrainment fluxes or large-scale phenomena. Analyzing the entrainment buoyancy heat flux, a large increase is obtained by the simulation when the residual layer is incorporated in the mixed layer by the growing convective boundary layer. Consequently, a precise definition of the characteristics of the residual layer is fundamental even though it is complex because the evolution of the main variables in the residual layer during the previous night depends on different factors such as radiation divergence or advection. Once the boundary layer is fully developed around midday, both models are used to study the dynamics of the boundary layer during the studied days. The models are able to reproduce the evolution of the boundary layer depth, potential temperature and specific humidity from late morning. They are also used to analyze the role played by subsidence and large-scale advection during the afternoon transition. During 1st of July, heat and moisture advection are negligible contributions to the heat or moisture budget, respectively, but subsidence plays an important role in the turbulence decay during the afternoon when a clear decrease of boundary layer depth was observed. On 2nd of July the main boundary layer variables follow similar evolution to the previous day, but with a lower maximum of the boundary layer depth. However, in the last part of the day, a front was approaching advecting moisture over the area and increasing the cloud cover. To summarize, the residual layer and large-scale phenomena play a crucial role in the development of the boundary layer during some days of the BLLAST campaign.
Original languageEnglish
Title of host publication20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA)
Place of PublicationBoston
PublisherAmerican Meteorological Society
Pages23
Publication statusPublished - 2012
Event20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction - Boston, United States
Duration: 9 Jul 201213 Jul 2012

Conference

Conference20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction
CountryUnited States
CityBoston
Period9/07/1213/07/12

Fingerprint

boundary layer
mixed layer
convective boundary layer
potential temperature
advection
turbulence
moisture
large eddy simulation
temporal evolution
entrainment
heat flux
humidity
subsidence
moisture flux
cloud cover
vertical profile
buoyancy
instrumentation
aircraft
divergence

Cite this

Blay, E., Pino, D., Vilà-Guerau de Arellano, J., van de Boer, A., de Coster, O., Faloona, I., ... Hartogensis, O. K. (2012). Role of residual layer and large-scale phenomena on the evolution of the boundary layer. In 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA) (pp. 23). Boston: American Meteorological Society.
Blay, E. ; Pino, D. ; Vilà-Guerau de Arellano, J. ; van de Boer, A. ; de Coster, O. ; Faloona, I. ; Garrouste, O. ; Hartogensis, O.K. / Role of residual layer and large-scale phenomena on the evolution of the boundary layer. 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). Boston : American Meteorological Society, 2012. pp. 23
@inproceedings{74e21bb500224d92aed26ec8b2ebb8cb,
title = "Role of residual layer and large-scale phenomena on the evolution of the boundary layer",
abstract = "Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed. Continuous measurements made by several remote sensing and in situ instruments in combination with radiosoundings, and measurements done by unmanned aerial vehicles and an aircraft probed the vertical structure and the temporal evolution of the boundary layer. Mixed layer theory (Tennekes and Driedonks, 1981) and the Dutch Atmospheric Large-Eddy Simulation model (DALES, Heus et al., 2011) are set to reproduce and analyze the dynamics of the atmosphere during these two days. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the model runs are inspired by the observations taken at the two supersites that concentrated most of the instrumentation during the campaign. For DALES the initial profile (at 7 UTC on 1st July and 5 UTC on 2nd July) takes into account the existence of a residual layer above the nocturnal stable layer observed during the early morning. The mixed layer model is initialized when a well-developed convective boundary layer was observed, from 10 UTC. Due to the surface heterogeneity of the area, the models were run separately to analyze the boundary layer conditions at the two different supersites. First, the research focuses on the role-played by the residual layer (RL) on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night to the development of the boundary layer at the morning. DALES, which takes into account the residual layer, is capable to model the observed sudden increase of the boundary layer depth and of the potential temperature occurred during the morning transition. There are different sources, which can be the responsible of the overshooting for instance surface and entrainment fluxes or large-scale phenomena. Analyzing the entrainment buoyancy heat flux, a large increase is obtained by the simulation when the residual layer is incorporated in the mixed layer by the growing convective boundary layer. Consequently, a precise definition of the characteristics of the residual layer is fundamental even though it is complex because the evolution of the main variables in the residual layer during the previous night depends on different factors such as radiation divergence or advection. Once the boundary layer is fully developed around midday, both models are used to study the dynamics of the boundary layer during the studied days. The models are able to reproduce the evolution of the boundary layer depth, potential temperature and specific humidity from late morning. They are also used to analyze the role played by subsidence and large-scale advection during the afternoon transition. During 1st of July, heat and moisture advection are negligible contributions to the heat or moisture budget, respectively, but subsidence plays an important role in the turbulence decay during the afternoon when a clear decrease of boundary layer depth was observed. On 2nd of July the main boundary layer variables follow similar evolution to the previous day, but with a lower maximum of the boundary layer depth. However, in the last part of the day, a front was approaching advecting moisture over the area and increasing the cloud cover. To summarize, the residual layer and large-scale phenomena play a crucial role in the development of the boundary layer during some days of the BLLAST campaign.",
author = "E. Blay and D. Pino and {Vil{\`a}-Guerau de Arellano}, J. and {van de Boer}, A. and {de Coster}, O. and I. Faloona and O. Garrouste and O.K. Hartogensis",
year = "2012",
language = "English",
pages = "23",
booktitle = "20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA)",
publisher = "American Meteorological Society",
address = "United States",

}

Blay, E, Pino, D, Vilà-Guerau de Arellano, J, van de Boer, A, de Coster, O, Faloona, I, Garrouste, O & Hartogensis, OK 2012, Role of residual layer and large-scale phenomena on the evolution of the boundary layer. in 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). American Meteorological Society, Boston, pp. 23, 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, Boston, United States, 9/07/12.

Role of residual layer and large-scale phenomena on the evolution of the boundary layer. / Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; van de Boer, A.; de Coster, O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). Boston : American Meteorological Society, 2012. p. 23.

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademic

TY - GEN

T1 - Role of residual layer and large-scale phenomena on the evolution of the boundary layer

AU - Blay, E.

AU - Pino, D.

AU - Vilà-Guerau de Arellano, J.

AU - van de Boer, A.

AU - de Coster, O.

AU - Faloona, I.

AU - Garrouste, O.

AU - Hartogensis, O.K.

PY - 2012

Y1 - 2012

N2 - Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed. Continuous measurements made by several remote sensing and in situ instruments in combination with radiosoundings, and measurements done by unmanned aerial vehicles and an aircraft probed the vertical structure and the temporal evolution of the boundary layer. Mixed layer theory (Tennekes and Driedonks, 1981) and the Dutch Atmospheric Large-Eddy Simulation model (DALES, Heus et al., 2011) are set to reproduce and analyze the dynamics of the atmosphere during these two days. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the model runs are inspired by the observations taken at the two supersites that concentrated most of the instrumentation during the campaign. For DALES the initial profile (at 7 UTC on 1st July and 5 UTC on 2nd July) takes into account the existence of a residual layer above the nocturnal stable layer observed during the early morning. The mixed layer model is initialized when a well-developed convective boundary layer was observed, from 10 UTC. Due to the surface heterogeneity of the area, the models were run separately to analyze the boundary layer conditions at the two different supersites. First, the research focuses on the role-played by the residual layer (RL) on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night to the development of the boundary layer at the morning. DALES, which takes into account the residual layer, is capable to model the observed sudden increase of the boundary layer depth and of the potential temperature occurred during the morning transition. There are different sources, which can be the responsible of the overshooting for instance surface and entrainment fluxes or large-scale phenomena. Analyzing the entrainment buoyancy heat flux, a large increase is obtained by the simulation when the residual layer is incorporated in the mixed layer by the growing convective boundary layer. Consequently, a precise definition of the characteristics of the residual layer is fundamental even though it is complex because the evolution of the main variables in the residual layer during the previous night depends on different factors such as radiation divergence or advection. Once the boundary layer is fully developed around midday, both models are used to study the dynamics of the boundary layer during the studied days. The models are able to reproduce the evolution of the boundary layer depth, potential temperature and specific humidity from late morning. They are also used to analyze the role played by subsidence and large-scale advection during the afternoon transition. During 1st of July, heat and moisture advection are negligible contributions to the heat or moisture budget, respectively, but subsidence plays an important role in the turbulence decay during the afternoon when a clear decrease of boundary layer depth was observed. On 2nd of July the main boundary layer variables follow similar evolution to the previous day, but with a lower maximum of the boundary layer depth. However, in the last part of the day, a front was approaching advecting moisture over the area and increasing the cloud cover. To summarize, the residual layer and large-scale phenomena play a crucial role in the development of the boundary layer during some days of the BLLAST campaign.

AB - Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed. Continuous measurements made by several remote sensing and in situ instruments in combination with radiosoundings, and measurements done by unmanned aerial vehicles and an aircraft probed the vertical structure and the temporal evolution of the boundary layer. Mixed layer theory (Tennekes and Driedonks, 1981) and the Dutch Atmospheric Large-Eddy Simulation model (DALES, Heus et al., 2011) are set to reproduce and analyze the dynamics of the atmosphere during these two days. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the model runs are inspired by the observations taken at the two supersites that concentrated most of the instrumentation during the campaign. For DALES the initial profile (at 7 UTC on 1st July and 5 UTC on 2nd July) takes into account the existence of a residual layer above the nocturnal stable layer observed during the early morning. The mixed layer model is initialized when a well-developed convective boundary layer was observed, from 10 UTC. Due to the surface heterogeneity of the area, the models were run separately to analyze the boundary layer conditions at the two different supersites. First, the research focuses on the role-played by the residual layer (RL) on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night to the development of the boundary layer at the morning. DALES, which takes into account the residual layer, is capable to model the observed sudden increase of the boundary layer depth and of the potential temperature occurred during the morning transition. There are different sources, which can be the responsible of the overshooting for instance surface and entrainment fluxes or large-scale phenomena. Analyzing the entrainment buoyancy heat flux, a large increase is obtained by the simulation when the residual layer is incorporated in the mixed layer by the growing convective boundary layer. Consequently, a precise definition of the characteristics of the residual layer is fundamental even though it is complex because the evolution of the main variables in the residual layer during the previous night depends on different factors such as radiation divergence or advection. Once the boundary layer is fully developed around midday, both models are used to study the dynamics of the boundary layer during the studied days. The models are able to reproduce the evolution of the boundary layer depth, potential temperature and specific humidity from late morning. They are also used to analyze the role played by subsidence and large-scale advection during the afternoon transition. During 1st of July, heat and moisture advection are negligible contributions to the heat or moisture budget, respectively, but subsidence plays an important role in the turbulence decay during the afternoon when a clear decrease of boundary layer depth was observed. On 2nd of July the main boundary layer variables follow similar evolution to the previous day, but with a lower maximum of the boundary layer depth. However, in the last part of the day, a front was approaching advecting moisture over the area and increasing the cloud cover. To summarize, the residual layer and large-scale phenomena play a crucial role in the development of the boundary layer during some days of the BLLAST campaign.

M3 - Conference paper

SP - 23

BT - 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA)

PB - American Meteorological Society

CY - Boston

ER -

Blay E, Pino D, Vilà-Guerau de Arellano J, van de Boer A, de Coster O, Faloona I et al. Role of residual layer and large-scale phenomena on the evolution of the boundary layer. In 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society (9-13 July 2012, Boston, MA). Boston: American Meteorological Society. 2012. p. 23