Risk of poultry compartments for transmission of Highly Pathogenic Avian Influenza

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

When outbreaks of Highly Pathogenic Avian Influenza (HPAI) occur in OIE member countries with until then disease-free status, member countries can use 'compartmentalisation'. A compartment may be defined as a subset of farms under a common management system, complying with certain stringent surveillance, control and biosecurity measures, and based on that may receive a disease-free status. Based on this disease-free status the compartment is exempted from certain transport restrictions coming into force in case of outbreaks occurring in the country. For deciding whether a candidate compartment is granted official compartment status, it is relevant to assess the additional HPAI transmission risks that would arise due to the exemptions granted. These risks consist of both additional local transmission risks as well as the additional risk of a 'jump' of HPAI infection from one poultry area, via the compartment, to another area. Here such risk assessment is carried out using a spatial mathematical model for between-farm transmission in the Netherlands, yielding insight in the roles of compartment composition and contact structure and identify relevant evaluation criteria for granting HPAI compartment status. At the core of this model are transmission probabilities associated with indirect between-farm contacts, e.g. through feed delivery, egg collection and professional visitors. These probabilities were estimated from Dutch epidemic outbreak data in earlier work. The additional risk of a jump of HPAI from one area, via the compartment, to another area is calculated relative to the direct jump risk. The results show that additional transmission risks caused by a compartment to other farms are mainly dependent on the distance of densely populated poultry areas (DPPAs) to the nearest compartment farm. Apart from conditions on these distances, we also recommend specific routing requirements for transport and other movements within the compartment.
LanguageEnglish
Article numbere0207076
JournalPLoS ONE
Volume14
Issue number2
DOIs
Publication statusPublished - 28 Nov 2018

Fingerprint

Poultry
Influenza in Birds
avian influenza
poultry
Farms
farms
Disease Outbreaks
biosecurity
Netherlands
Risk assessment
risk assessment
management systems
Ovum
Theoretical Models
mathematical models
Mathematical models
monitoring
Infection
Chemical analysis
infection

Cite this

@article{6ee45c94d68d4fe2b77eebc2e6f45159,
title = "Risk of poultry compartments for transmission of Highly Pathogenic Avian Influenza",
abstract = "When outbreaks of Highly Pathogenic Avian Influenza (HPAI) occur in OIE member countries with until then disease-free status, member countries can use 'compartmentalisation'. A compartment may be defined as a subset of farms under a common management system, complying with certain stringent surveillance, control and biosecurity measures, and based on that may receive a disease-free status. Based on this disease-free status the compartment is exempted from certain transport restrictions coming into force in case of outbreaks occurring in the country. For deciding whether a candidate compartment is granted official compartment status, it is relevant to assess the additional HPAI transmission risks that would arise due to the exemptions granted. These risks consist of both additional local transmission risks as well as the additional risk of a 'jump' of HPAI infection from one poultry area, via the compartment, to another area. Here such risk assessment is carried out using a spatial mathematical model for between-farm transmission in the Netherlands, yielding insight in the roles of compartment composition and contact structure and identify relevant evaluation criteria for granting HPAI compartment status. At the core of this model are transmission probabilities associated with indirect between-farm contacts, e.g. through feed delivery, egg collection and professional visitors. These probabilities were estimated from Dutch epidemic outbreak data in earlier work. The additional risk of a jump of HPAI from one area, via the compartment, to another area is calculated relative to the direct jump risk. The results show that additional transmission risks caused by a compartment to other farms are mainly dependent on the distance of densely populated poultry areas (DPPAs) to the nearest compartment farm. Apart from conditions on these distances, we also recommend specific routing requirements for transport and other movements within the compartment.",
author = "T.J. Hagenaars and G.J. Boender and R.H.M. Bergevoet and {van Roermund}, H.J.W.",
note = "Project BO-08-01-011 (Maatschappelijk Aanvaardbare Dierziektebestrijding, MAD) Loopjaar 2013",
year = "2018",
month = "11",
day = "28",
doi = "10.1371/journal.pone.0207076",
language = "English",
volume = "14",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "2",

}

Risk of poultry compartments for transmission of Highly Pathogenic Avian Influenza. / Hagenaars, T.J.; Boender, G.J.; Bergevoet, R.H.M.; van Roermund, H.J.W.

In: PLoS ONE, Vol. 14, No. 2, e0207076, 28.11.2018.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Risk of poultry compartments for transmission of Highly Pathogenic Avian Influenza

AU - Hagenaars, T.J.

AU - Boender, G.J.

AU - Bergevoet, R.H.M.

AU - van Roermund, H.J.W.

N1 - Project BO-08-01-011 (Maatschappelijk Aanvaardbare Dierziektebestrijding, MAD) Loopjaar 2013

PY - 2018/11/28

Y1 - 2018/11/28

N2 - When outbreaks of Highly Pathogenic Avian Influenza (HPAI) occur in OIE member countries with until then disease-free status, member countries can use 'compartmentalisation'. A compartment may be defined as a subset of farms under a common management system, complying with certain stringent surveillance, control and biosecurity measures, and based on that may receive a disease-free status. Based on this disease-free status the compartment is exempted from certain transport restrictions coming into force in case of outbreaks occurring in the country. For deciding whether a candidate compartment is granted official compartment status, it is relevant to assess the additional HPAI transmission risks that would arise due to the exemptions granted. These risks consist of both additional local transmission risks as well as the additional risk of a 'jump' of HPAI infection from one poultry area, via the compartment, to another area. Here such risk assessment is carried out using a spatial mathematical model for between-farm transmission in the Netherlands, yielding insight in the roles of compartment composition and contact structure and identify relevant evaluation criteria for granting HPAI compartment status. At the core of this model are transmission probabilities associated with indirect between-farm contacts, e.g. through feed delivery, egg collection and professional visitors. These probabilities were estimated from Dutch epidemic outbreak data in earlier work. The additional risk of a jump of HPAI from one area, via the compartment, to another area is calculated relative to the direct jump risk. The results show that additional transmission risks caused by a compartment to other farms are mainly dependent on the distance of densely populated poultry areas (DPPAs) to the nearest compartment farm. Apart from conditions on these distances, we also recommend specific routing requirements for transport and other movements within the compartment.

AB - When outbreaks of Highly Pathogenic Avian Influenza (HPAI) occur in OIE member countries with until then disease-free status, member countries can use 'compartmentalisation'. A compartment may be defined as a subset of farms under a common management system, complying with certain stringent surveillance, control and biosecurity measures, and based on that may receive a disease-free status. Based on this disease-free status the compartment is exempted from certain transport restrictions coming into force in case of outbreaks occurring in the country. For deciding whether a candidate compartment is granted official compartment status, it is relevant to assess the additional HPAI transmission risks that would arise due to the exemptions granted. These risks consist of both additional local transmission risks as well as the additional risk of a 'jump' of HPAI infection from one poultry area, via the compartment, to another area. Here such risk assessment is carried out using a spatial mathematical model for between-farm transmission in the Netherlands, yielding insight in the roles of compartment composition and contact structure and identify relevant evaluation criteria for granting HPAI compartment status. At the core of this model are transmission probabilities associated with indirect between-farm contacts, e.g. through feed delivery, egg collection and professional visitors. These probabilities were estimated from Dutch epidemic outbreak data in earlier work. The additional risk of a jump of HPAI from one area, via the compartment, to another area is calculated relative to the direct jump risk. The results show that additional transmission risks caused by a compartment to other farms are mainly dependent on the distance of densely populated poultry areas (DPPAs) to the nearest compartment farm. Apart from conditions on these distances, we also recommend specific routing requirements for transport and other movements within the compartment.

U2 - 10.1371/journal.pone.0207076

DO - 10.1371/journal.pone.0207076

M3 - Article

VL - 14

JO - PLoS ONE

T2 - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 2

M1 - e0207076

ER -