TY - JOUR
T1 - Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams
AU - dos Reis Oliveira, Paula C.
AU - Kraak, Michiel H.S.
AU - Pena-Ortiz, Michelle
AU - van der Geest, Harm G.
AU - Verdonschot, Piet F.M.
PY - 2020/2/10
Y1 - 2020/2/10
N2 - The input of land use specific organic matter into lowland streams may impact sediment characteristics in terms of food resources and habitat structure, resulting in differences in macroinvertebrate community composition. Therefore, we investigated to what extent land use specific sediment food and habitat characteristics structure macroinvertebrate communities. To this purpose linear multiple regression models were constructed, in which macroinvertebrate biotic indices were considered as response variables and sediment characteristics as predictor variables, analysed in 20 stream stretches running through five different land use types. Sediment characteristics and macroinvertebrate community composition were land use specific. The carbon/nitrogen (C/N) ratio, woody debris substrate cover and the origin of fatty acids influenced macroinvertebrate community composition. Shannon-Wiener diversity was better explained by fatty acids origin, such as in grassland streams, where a higher relative content of plant derived fatty acids related to a higher macroinvertebrate diversity. In cropland and wastewater treatment plant (WWTP) streams with a low C/N ratio and dominated by microbial derived fatty acids, higher abundances of Oligochaeta and Chironomus sp. were observed. Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness was positively related to woody debris substrate cover, which only occurred in forest streams. Hence, macroinvertebrate community composition was influenced by the origin of the organic material, being either allochthonous or autochthonous and when autochthonous being either autotrophic or heterotrophic. It is therefore concluded that sediment food and habitat characteristics are key ecological filters.
AB - The input of land use specific organic matter into lowland streams may impact sediment characteristics in terms of food resources and habitat structure, resulting in differences in macroinvertebrate community composition. Therefore, we investigated to what extent land use specific sediment food and habitat characteristics structure macroinvertebrate communities. To this purpose linear multiple regression models were constructed, in which macroinvertebrate biotic indices were considered as response variables and sediment characteristics as predictor variables, analysed in 20 stream stretches running through five different land use types. Sediment characteristics and macroinvertebrate community composition were land use specific. The carbon/nitrogen (C/N) ratio, woody debris substrate cover and the origin of fatty acids influenced macroinvertebrate community composition. Shannon-Wiener diversity was better explained by fatty acids origin, such as in grassland streams, where a higher relative content of plant derived fatty acids related to a higher macroinvertebrate diversity. In cropland and wastewater treatment plant (WWTP) streams with a low C/N ratio and dominated by microbial derived fatty acids, higher abundances of Oligochaeta and Chironomus sp. were observed. Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness was positively related to woody debris substrate cover, which only occurred in forest streams. Hence, macroinvertebrate community composition was influenced by the origin of the organic material, being either allochthonous or autochthonous and when autochthonous being either autotrophic or heterotrophic. It is therefore concluded that sediment food and habitat characteristics are key ecological filters.
KW - C/N ratio
KW - Fatty acids
KW - Food resource
KW - GLM
KW - Macroinvertebrate indices
KW - Substrate cover
U2 - 10.1016/j.scitotenv.2019.135060
DO - 10.1016/j.scitotenv.2019.135060
M3 - Article
C2 - 31757549
AN - SCOPUS:85075997850
SN - 0048-9697
VL - 703
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 135060
ER -