TY - JOUR
T1 - Rescue of recombinant Newcastle disease virus
T2 - a short history of how it all started
AU - Molouki, Aidin
AU - Peeters, Ben
PY - 2017
Y1 - 2017
N2 - Reverse genetics of viruses has come a long way, and many recombinant viruses have been generated since the first successful “rescues” were reported in the late 1970s. Recombinant Newcastle disease virus (rNDV), a non-segmented negative-sense RNA virus (NSNSV), was first rescued in 1999 using a reverse genetics approach similar to that reported for other recombinant viruses of the order Mononegavirales a few years before. The route from an original NDV isolate to the generation of its recombinant counterpart requires many steps that have to be sequentially and carefully completed. Background knowledge of each of these steps is essential because it allows one to make the best choices for fulfilling the specific requirements of the final recombinant virus. We have previously reviewed the latest strategies in cloning the NDV full-length cDNA into transcription vectors and the use of different RNA polymerase systems for the generation of viral RNA from plasmid DNA. In this article, we review a number of discoveries on the mechanism of transcription and replication of NDV, including a brief history behind the discovery of its RNP complex. This includes the generation of artificial and functional RNP constructs, in combination with the smart use of available knowledge and technologies that ultimately resulted in rescue of the first rNDV.
AB - Reverse genetics of viruses has come a long way, and many recombinant viruses have been generated since the first successful “rescues” were reported in the late 1970s. Recombinant Newcastle disease virus (rNDV), a non-segmented negative-sense RNA virus (NSNSV), was first rescued in 1999 using a reverse genetics approach similar to that reported for other recombinant viruses of the order Mononegavirales a few years before. The route from an original NDV isolate to the generation of its recombinant counterpart requires many steps that have to be sequentially and carefully completed. Background knowledge of each of these steps is essential because it allows one to make the best choices for fulfilling the specific requirements of the final recombinant virus. We have previously reviewed the latest strategies in cloning the NDV full-length cDNA into transcription vectors and the use of different RNA polymerase systems for the generation of viral RNA from plasmid DNA. In this article, we review a number of discoveries on the mechanism of transcription and replication of NDV, including a brief history behind the discovery of its RNP complex. This includes the generation of artificial and functional RNP constructs, in combination with the smart use of available knowledge and technologies that ultimately resulted in rescue of the first rNDV.
U2 - 10.1007/s00705-017-3308-2
DO - 10.1007/s00705-017-3308-2
M3 - Article
AN - SCOPUS:85015624312
SN - 0304-8608
VL - 162
SP - 1845
EP - 1854
JO - Archives of Virology
JF - Archives of Virology
IS - 7
ER -