Research output per year
Research output per year
Niek F. de Jonge*, Helge Hecht, Michael Strobel, Mingxun Wang, Justin J.J. van der Hooft*, Florian Huber*
Research output: Contribution to journal › Article › Academic › peer-review
Mass spectral libraries have proven to be essential for mass spectrum annotation, both for library matching and training new machine learning algorithms. A key step in training machine learning models is the availability of high-quality training data. Public libraries of mass spectrometry data that are open to user submission often suffer from limited metadata curation and harmonization. The resulting variability in data quality makes training of machine learning models challenging. Here we present a library cleaning pipeline designed for cleaning tandem mass spectrometry library data. The pipeline is designed with ease of use, flexibility, and reproducibility as leading principles. Scientific contribution This pipeline will result in cleaner public mass spectral libraries that will improve library searching and the quality of machine-learning training datasets in mass spectrometry. This pipeline builds on previous work by adding new functionality for curating and correcting annotated libraries, by validating structure annotations. Due to the high quality of our software, the reproducibility, and improved logging, we think our new pipeline has the potential to become the standard in the field for cleaning tandem mass spectrometry libraries. Graphical Abstract: (Figure presented.)
Original language | English |
---|---|
Article number | 88 |
Number of pages | 9 |
Journal | Journal of Cheminformatics |
Volume | 16 |
DOIs | |
Publication status | Published - 29 Jul 2024 |
Research output: Working paper › Preprint