Removal of micropollutants from aerobically treated grey water via ozone and activated carbon

Research output: Contribution to journalArticleAcademicpeer-review

127 Citations (Scopus)

Abstract

Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100–1600 µgL-1) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL-1, reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100–1600 µgL-1 at a PAC dose of 1.25 gL-1 and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1–10 µgL-1 at a flow of 0.5 bed volumes (BV)h-1 showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh-1. Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10–100 µgL-1, efficient removal to below limits of quantification continued for at least 1440 BV. Both ozonation and adsorption are suitable techniques for the removal of micropollutants from aerobically treated grey water.
Original languageEnglish
Pages (from-to)2887-2896
JournalWater Research
Volume45
Issue number9
DOIs
Publication statusPublished - 2011

Keywords

  • waste water treatment
  • water treatment
  • pollutants
  • removal
  • waste water
  • aerobic treatment
  • ozone
  • activated carbon
  • processors
  • comparative research
  • endocrine-disrupting chemicals
  • waste-water
  • uv filters
  • organic-compounds
  • bisphenol-a
  • in-vitro
  • pharmaceuticals
  • ozonation
  • products
  • vivo

Fingerprint Dive into the research topics of 'Removal of micropollutants from aerobically treated grey water via ozone and activated carbon'. Together they form a unique fingerprint.

Cite this