Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets

J. Dijkstra, S. van Gastelen, E.C. Antunes Fernandes, D. Warner, Bayissa Hatew, G. Klop, S.C. Podesta, H.J. van Lingen, K.A. Hettinga, A. Bannink

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

We quantified relationships between methane production and milk fatty acid (FA) profile in dairy cattle fed grass- or grass silage-based diets, and determined whether recent prediction equations for methane, based on a wide variety of diets, are applicable to grass- and grass silage-based diets. Data from three studies were used, encompassing four grass herbage and 14 grass silage treatments and 132 individual cow observations. Methane production was measured using respiration chambers and milk fatty acids (FAs) analysed using gas chromatography. The proportion of grass or grass silage (dry matter (DM) basis) was 0.80 ± 0.037. Methane yield averaged 22.3 ± 2.10 g/kg DM intake (DMI) and 14.2 ± 2.90 g/kg fat- and protein-corrected milk (FPCM). Mixed model univariate regression including a random study effect on intercept was applied to predict methane yield, with individual milk FA concentrations (g/100 g FA) as fixed effects. Of the 42 milk FAs identified, no single FA had a strong positive correlation (r; strong correlation defined as |r| ≥ 0.50) with methane yield (g/kg DMI), and cis-12 C18:1 and cis-9,12,15 C18:3 had a strong negative correlation with methane yield (g/kg DMI). C14:0 iso, C15:0, C15:0 iso, C15:0 anteiso, C16:0, C20:0, cis-11,14 C20:2, cis-5,8,11,14 C20:4, C22:0, cis-7,10,13,16,19 C22:5 and C24:0 had a strong positive correlation with methane yield (g/kg FPCM), and trans-15+cis-11 C18:1, cis-9 C18:1, and cis-11 C20:1 had a strong negative correlation with methane yield (g/kg FPCM). Observed methane yield was compared with methane yield predicted by the equations of van Lingen et al. (2014; Journal of Dairy Science 97, 7115–7132). These equations did not accurately predict methane yield as grams per kilogram DMI (concordance correlation coefficient (CCC) = 0.13) or as grams per kilogram FPCM (CCC = 0.22), in particular related to large differences in standard deviation between predicted and observed values. In conclusion, quantitative relationships between milk FA profile and methane yield in cattle fed grass- or grass silage-based diets differ from those determined for other types of diets.
LanguageEnglish
Pages541-548
JournalAnimal Production Science
Volume56
Issue number3
DOIs
Publication statusPublished - 2016

Fingerprint

Silage
cattle feeds
Methane
grass silage
Poaceae
methane production
methane
dairy cattle
Milk
Fatty Acids
fatty acid composition
Diet
grasses
diet
dairy protein
Milk Proteins
Fats
lipids
milk fatty acids
dairy science

Cite this

Dijkstra, J. ; van Gastelen, S. ; Antunes Fernandes, E.C. ; Warner, D. ; Hatew, Bayissa ; Klop, G. ; Podesta, S.C. ; van Lingen, H.J. ; Hettinga, K.A. ; Bannink, A. / Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets. In: Animal Production Science. 2016 ; Vol. 56, No. 3. pp. 541-548.
@article{dda4e3f3541d4f389f73582b423eef76,
title = "Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets",
abstract = "We quantified relationships between methane production and milk fatty acid (FA) profile in dairy cattle fed grass- or grass silage-based diets, and determined whether recent prediction equations for methane, based on a wide variety of diets, are applicable to grass- and grass silage-based diets. Data from three studies were used, encompassing four grass herbage and 14 grass silage treatments and 132 individual cow observations. Methane production was measured using respiration chambers and milk fatty acids (FAs) analysed using gas chromatography. The proportion of grass or grass silage (dry matter (DM) basis) was 0.80 ± 0.037. Methane yield averaged 22.3 ± 2.10 g/kg DM intake (DMI) and 14.2 ± 2.90 g/kg fat- and protein-corrected milk (FPCM). Mixed model univariate regression including a random study effect on intercept was applied to predict methane yield, with individual milk FA concentrations (g/100 g FA) as fixed effects. Of the 42 milk FAs identified, no single FA had a strong positive correlation (r; strong correlation defined as |r| ≥ 0.50) with methane yield (g/kg DMI), and cis-12 C18:1 and cis-9,12,15 C18:3 had a strong negative correlation with methane yield (g/kg DMI). C14:0 iso, C15:0, C15:0 iso, C15:0 anteiso, C16:0, C20:0, cis-11,14 C20:2, cis-5,8,11,14 C20:4, C22:0, cis-7,10,13,16,19 C22:5 and C24:0 had a strong positive correlation with methane yield (g/kg FPCM), and trans-15+cis-11 C18:1, cis-9 C18:1, and cis-11 C20:1 had a strong negative correlation with methane yield (g/kg FPCM). Observed methane yield was compared with methane yield predicted by the equations of van Lingen et al. (2014; Journal of Dairy Science 97, 7115–7132). These equations did not accurately predict methane yield as grams per kilogram DMI (concordance correlation coefficient (CCC) = 0.13) or as grams per kilogram FPCM (CCC = 0.22), in particular related to large differences in standard deviation between predicted and observed values. In conclusion, quantitative relationships between milk FA profile and methane yield in cattle fed grass- or grass silage-based diets differ from those determined for other types of diets.",
author = "J. Dijkstra and {van Gastelen}, S. and {Antunes Fernandes}, E.C. and D. Warner and Bayissa Hatew and G. Klop and S.C. Podesta and {van Lingen}, H.J. and K.A. Hettinga and A. Bannink",
year = "2016",
doi = "10.1071/AN15509",
language = "English",
volume = "56",
pages = "541--548",
journal = "Animal Production Science",
issn = "1836-0939",
publisher = "CSIRO Publishing",
number = "3",

}

Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets. / Dijkstra, J.; van Gastelen, S.; Antunes Fernandes, E.C.; Warner, D.; Hatew, Bayissa ; Klop, G.; Podesta, S.C.; van Lingen, H.J.; Hettinga, K.A.; Bannink, A.

In: Animal Production Science, Vol. 56, No. 3, 2016, p. 541-548.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets

AU - Dijkstra, J.

AU - van Gastelen, S.

AU - Antunes Fernandes, E.C.

AU - Warner, D.

AU - Hatew, Bayissa

AU - Klop, G.

AU - Podesta, S.C.

AU - van Lingen, H.J.

AU - Hettinga, K.A.

AU - Bannink, A.

PY - 2016

Y1 - 2016

N2 - We quantified relationships between methane production and milk fatty acid (FA) profile in dairy cattle fed grass- or grass silage-based diets, and determined whether recent prediction equations for methane, based on a wide variety of diets, are applicable to grass- and grass silage-based diets. Data from three studies were used, encompassing four grass herbage and 14 grass silage treatments and 132 individual cow observations. Methane production was measured using respiration chambers and milk fatty acids (FAs) analysed using gas chromatography. The proportion of grass or grass silage (dry matter (DM) basis) was 0.80 ± 0.037. Methane yield averaged 22.3 ± 2.10 g/kg DM intake (DMI) and 14.2 ± 2.90 g/kg fat- and protein-corrected milk (FPCM). Mixed model univariate regression including a random study effect on intercept was applied to predict methane yield, with individual milk FA concentrations (g/100 g FA) as fixed effects. Of the 42 milk FAs identified, no single FA had a strong positive correlation (r; strong correlation defined as |r| ≥ 0.50) with methane yield (g/kg DMI), and cis-12 C18:1 and cis-9,12,15 C18:3 had a strong negative correlation with methane yield (g/kg DMI). C14:0 iso, C15:0, C15:0 iso, C15:0 anteiso, C16:0, C20:0, cis-11,14 C20:2, cis-5,8,11,14 C20:4, C22:0, cis-7,10,13,16,19 C22:5 and C24:0 had a strong positive correlation with methane yield (g/kg FPCM), and trans-15+cis-11 C18:1, cis-9 C18:1, and cis-11 C20:1 had a strong negative correlation with methane yield (g/kg FPCM). Observed methane yield was compared with methane yield predicted by the equations of van Lingen et al. (2014; Journal of Dairy Science 97, 7115–7132). These equations did not accurately predict methane yield as grams per kilogram DMI (concordance correlation coefficient (CCC) = 0.13) or as grams per kilogram FPCM (CCC = 0.22), in particular related to large differences in standard deviation between predicted and observed values. In conclusion, quantitative relationships between milk FA profile and methane yield in cattle fed grass- or grass silage-based diets differ from those determined for other types of diets.

AB - We quantified relationships between methane production and milk fatty acid (FA) profile in dairy cattle fed grass- or grass silage-based diets, and determined whether recent prediction equations for methane, based on a wide variety of diets, are applicable to grass- and grass silage-based diets. Data from three studies were used, encompassing four grass herbage and 14 grass silage treatments and 132 individual cow observations. Methane production was measured using respiration chambers and milk fatty acids (FAs) analysed using gas chromatography. The proportion of grass or grass silage (dry matter (DM) basis) was 0.80 ± 0.037. Methane yield averaged 22.3 ± 2.10 g/kg DM intake (DMI) and 14.2 ± 2.90 g/kg fat- and protein-corrected milk (FPCM). Mixed model univariate regression including a random study effect on intercept was applied to predict methane yield, with individual milk FA concentrations (g/100 g FA) as fixed effects. Of the 42 milk FAs identified, no single FA had a strong positive correlation (r; strong correlation defined as |r| ≥ 0.50) with methane yield (g/kg DMI), and cis-12 C18:1 and cis-9,12,15 C18:3 had a strong negative correlation with methane yield (g/kg DMI). C14:0 iso, C15:0, C15:0 iso, C15:0 anteiso, C16:0, C20:0, cis-11,14 C20:2, cis-5,8,11,14 C20:4, C22:0, cis-7,10,13,16,19 C22:5 and C24:0 had a strong positive correlation with methane yield (g/kg FPCM), and trans-15+cis-11 C18:1, cis-9 C18:1, and cis-11 C20:1 had a strong negative correlation with methane yield (g/kg FPCM). Observed methane yield was compared with methane yield predicted by the equations of van Lingen et al. (2014; Journal of Dairy Science 97, 7115–7132). These equations did not accurately predict methane yield as grams per kilogram DMI (concordance correlation coefficient (CCC) = 0.13) or as grams per kilogram FPCM (CCC = 0.22), in particular related to large differences in standard deviation between predicted and observed values. In conclusion, quantitative relationships between milk FA profile and methane yield in cattle fed grass- or grass silage-based diets differ from those determined for other types of diets.

U2 - 10.1071/AN15509

DO - 10.1071/AN15509

M3 - Article

VL - 56

SP - 541

EP - 548

JO - Animal Production Science

T2 - Animal Production Science

JF - Animal Production Science

SN - 1836-0939

IS - 3

ER -