Abstract
Lactobacillus plantarum, a commensal bacterium of humans, has been proposed to enhance the intestinal barrier, which is compromised in a number of intestinal disorders. To study the effect of L. plantarum strain WCFS1 on human barrier function, healthy subjects were administered L. plantarum or placebo in the duodenum for 6 h by means of a feeding catheter. The scaffold protein zonula occludens (ZO)-1 and transmembrane protein occludin were found to be significantly increased in the vicinity of the tight-junction (TJ) structures, which form the paracellular seal between cells of the epithelium. In an in vitro model of the human epithelium, L. plantarum induced translocation of ZO-1 to the TJ region; however, the effects on occludin were minor compared with those seen in vivo. L. plantarum was shown to activate Toll-like receptor 2 (TLR2) signaling, and treatment of Caco-2 monolayers with the TLR2 agonist Pam3-Cys-SK4(PCSK) significantly increased fluorescent staining of occludin in the TJ. Pretreatment of Caco-2 monolayers with L. plantarum or PCSK significantly attenuated the effects of phorbol ester-induced dislocation of ZO-1 and occludin and the associated increase in epithelial permeability. Our results identifying commensal bacterial stimulation of TLR2 in the gut epithelium as a regulator of epithelial integrity have important implications for understanding probiotic mechanisms and the control of intestinal homeostasis
Original language | English |
---|---|
Pages (from-to) | G851-G859 |
Journal | American Journal of Physiology. Gastrointestinal and Liver Physiology |
Volume | 298 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2010 |
Keywords
- inflammatory-bowel-disease
- necrosis-factor-alpha
- intestinal permeability
- kinase-c
- mucosal integrity
- probiotics
- cells
- rats
- pathophysiology
- dysfunction