TY - JOUR
T1 - Reduced skeletal muscle uncoupling protein-3 content in prediabetic subjects and type 2 diabetic patients: Restoration by rosiglitazone treatment
AU - Schrauwen, Patrick
AU - Mensink, Marco
AU - Schaart, Gert
AU - Moonen-Kornips, Esther
AU - Sels, Jean Pierre
AU - Blaak, Ellen E.
AU - Russell, Aaron P.
AU - Hesselink, Matthijs K.C.
PY - 2006/4/1
Y1 - 2006/4/1
N2 - Context: The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes. Objective: We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3. Patients, Design, Intervention: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 ± 3.1 yr; body mass index (BMI), 29.8 ± 2.9 kg/m2], nine IGT subjects (age, 59.0 ± 6.6 yr; BMI, 29.7 ± 3.0 kg/m2), and 10 age- and BMI-matched healthy controls (age, 57.3 ± 7.4 yr; BMI, 30.1 ± 3.9 kg/m2) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk. Main Outcome Measures: Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I-V) content. Results: UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 ± 28.5, 47.2 ± 24.7, and 72.0 ± 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I-V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 ± 29.9 to 66.3 ± 30.9 arbitrary units; P < 0.05). Conclusion: We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.
AB - Context: The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes. Objective: We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3. Patients, Design, Intervention: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 ± 3.1 yr; body mass index (BMI), 29.8 ± 2.9 kg/m2], nine IGT subjects (age, 59.0 ± 6.6 yr; BMI, 29.7 ± 3.0 kg/m2), and 10 age- and BMI-matched healthy controls (age, 57.3 ± 7.4 yr; BMI, 30.1 ± 3.9 kg/m2) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk. Main Outcome Measures: Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I-V) content. Results: UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 ± 28.5, 47.2 ± 24.7, and 72.0 ± 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I-V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 ± 29.9 to 66.3 ± 30.9 arbitrary units; P < 0.05). Conclusion: We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.
U2 - 10.1210/jc.2005-1572
DO - 10.1210/jc.2005-1572
M3 - Article
C2 - 16384852
AN - SCOPUS:33646066008
SN - 0021-972X
VL - 91
SP - 1520
EP - 1525
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 4
ER -