Rationally designed antibodies as research tools to study the structure–toxicity relationship of amyloid-β oligomers

Ryan Limbocker*, Benedetta Mannini, Rodrigo Cataldi, Shianne Chhangur, Aidan K. Wright, Ryan P. Kreiser, J.A. Albright, Sean Chia, Johnny Habchi, Pietro Sormanni, Janet R. Kumita, Francesco S. Ruggeri, Christopher M. Dobson, Fabrizio Chiti, Francesco A. Aprile, Michele Vendruscolo

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

Alzheimer’s disease is associated with the aggregation of the amyloid-β peptide (Aβ), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aβ aggregates induce neuronal dysfunction has highlighted the importance of the Aβ oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure–toxicity relationship of Aβ oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aβ (Aβ40) as models of brain Aβ oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18–24 and 34–40 of Aβ40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aβ40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure–toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aβ oligomers.

Original languageEnglish
Article number4542
Pages (from-to)1-18
Number of pages18
JournalInternational Journal of Molecular Sciences
Volume21
Issue number12
DOIs
Publication statusPublished - Jun 2020
Externally publishedYes

Keywords

  • Alzheimer’s disease
  • Amyloid-β
  • Biophysics
  • Protein misfolded oligomers
  • Rationally designed antibodies
  • Research tools
  • Structure–toxicity relationship

Fingerprint

Dive into the research topics of 'Rationally designed antibodies as research tools to study the structure–toxicity relationship of amyloid-β oligomers'. Together they form a unique fingerprint.

Cite this