Projects per year
Abstract
We investigate the vertical transport of atmospheric chemical reactants from the subcloud layer to the cumulus cloud layer driven by shallow convection over the Amazon during the dry season. The dynamical and chemical assumptions needed for mesoscale and global chemistry transport model parametrizations are systematically analyzed using a Large Eddy Simulation model. We quantify the mass flux transport contribution to the temporal evolution of reactants. Isoprene, a key atmospheric compound over the tropical rain forest, decreases by 8.5% h-1 on average and 15% h-1 at maximum due to mass¿flux¿induced removal. We apply mass flux parametrizations for the transport of chemical reactants and obtain satisfactory agreement with numerically resolved transport, except for some reactants like O3, NO, and NO2. The latter is caused by the local partitioning of reactants, influenced by UV radiation extinction by clouds and small¿scale variability of ambient atmospheric compounds. By considering the longer¿lived NOx (NO + NO2), the transport is well represented by the parametrization. Finally, by considering heterogeneous surface exchange conditions, it is demonstrated that the parametrizations are sensitive to boundary conditions due to changes in the boundary layer dynamics.
Original language | English |
---|---|
Pages (from-to) | 13041-13059 |
Journal | Journal of Geophysical Research: Atmospheres |
Volume | 118 |
Issue number | 23 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- large-eddy simulation
- topped mixed layers
- convective boundary-layer
- diurnal cycle
- surface
- land
- fluxes
- model
- chemistry
- campaign
Fingerprint Dive into the research topics of 'Quantifying the transport of subcloud layer reactants by shallow cimulus clouds over the Amazon'. Together they form a unique fingerprint.
Projects
- 1 Finished
-
PEGASOS: Pan-European Gas-AeroSol-climate interaction Study
1/01/11 → 31/12/14
Project: EU research project