Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study

Balázs Erdős*, Bart van Sloun, Gijs H. Goossens, Shauna D. O’Donovan, Bastiaan E. de Galan, Marleen M.J. van Greevenbroek, Coen D.A. Stehouwer, Miranda T. Schram, Ellen E. Blaak, Michiel E. Adriaens, Natal A.W. van Riel, Ilja C.W. Arts

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals’ glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R2 and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests.

Original languageEnglish
Article numbere0285820
JournalPLoS ONE
Volume18
Issue number7 July
DOIs
Publication statusPublished - Jul 2023

Fingerprint

Dive into the research topics of 'Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study'. Together they form a unique fingerprint.

Cite this