Quantifying aboveground biomass, soil organic carbon and erosion with a detailed crop map and PESERA model in the Yangtze River Basin

Jichen Zhou, Jantienne Baartman, Yinan Ning, João Pedro Nunes, Hedwig van Delden, Roel Vanhout, Xinping Chen, Coen Ritsema, Lihua Ma*, Xuejun Liu*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Soil erosion represents a primary threat to soil systems with adverse implications for ecosystem services, crop production, potable water and carbon storage. While numerous studies have quantified the spatial distribution of aboveground Biomass (AGB), soil erosion and soil organic carbon (SOC) in the Yangtze River Basin (YRB), limited attention has been given to assessing the contributions of different land use types and especially crop types to AGB, soil erosion and SOC. In most studies, cropland is taken as a land use class, while detailed crop types and rotation patterns, and their effect on soil erosion and SOC, vary significantly. In this study, we used the Metronamica model to generate a detailed crop rotation and distribution map across the YRB and subsequently employed the Pan-European Soil Erosion Risk Assessment (PESERA) model to simulate the spatial distribution of AGB, soil erosion and SOC on a monthly basis. PESERA model simulations indicate an average soil erosion rate across the entire YRB of 7.7 ton/ha/yr, with erosion hotspots concentrated in the Sichuan Basin and the central-southern regions. The southwestern region and western Sichuan show elevated levels of AGB and SOC, while the eastern plains display lower levels. Erosion rates are lowest in areas designated as artificial land, pasture and grassland, whereas croplands and fruit tree plantations experience the highest erosion rates. In terms of crop types, the highest erosion rates and lowest AGB are observed under fallow and potato cultivation, while the lowest erosion rates and highest AGB are found in rice-wheat rotation fields. To the best of our knowledge, this is the first study taking detailed crop types and patterns into account while evaluating their effect at a relatively large scale (i.e., YRB). These findings can help to develop sustainable soil management and (cropping) conservation strategies.

Original languageEnglish
Article numbere13503
JournalEuropean Journal of Soil Science
Volume75
Issue number3
DOIs
Publication statusPublished - 1 May 2024

Keywords

  • crop rotation
  • Metronamica model
  • PESERA model
  • soil loss
  • spatial distribution

Fingerprint

Dive into the research topics of 'Quantifying aboveground biomass, soil organic carbon and erosion with a detailed crop map and PESERA model in the Yangtze River Basin'. Together they form a unique fingerprint.

Cite this