TY - JOUR
T1 - Pyrethroid residues in Indonesian river Citarum
T2 - A simple analytical method applied for an ecological and human health risk assessment
AU - Ariyani, Miranti
AU - Yusiasih, Retno
AU - Endah, Een Sri
AU - Koesmawati, Tiny Agustini
AU - Ridwan, Yohanes Susanto
AU - Rohman, Oman
AU - Wulan, Diana Rahayuning
AU - Amran, Muhammad Bachri
AU - Pitoi, Mariska Margaret
PY - 2023/9
Y1 - 2023/9
N2 - Pyrethroid residues in the Citarum River, Indonesia, was first investigated based on their occurrences, water assimilative capacity, and risk assessment. In this paper, first, a relatively simple and efficient method was built and validated for analysis of seven pyrethroids in a river water matrix: bifenthrin, fenpropathrin, permethrin, β-cyfluthrin, cypermethrin, fenvalerate, and deltamethrin. Next, the validated method was used to analyze pyrethroids in the Citarum River. Three pyrethroids, β-cyfluthrin, cypermethrin, and deltamethrin, were detected in some sampling points with concentration up to 0.01 mg/L. Water assimilative capacity evaluation shows that β-cyfluthrin and deltamethrin pollution exceed the Citarum river water capacity. However, due to hydrophobicity properties of pyrethroids, removal through binding to sediments are expected. Ecotoxicity risk assessment shows that β-cyfluthrin, cypermethrin and deltamethrin pose risks to the aquatic organisms in the Citarum River and its tributaries through bioaccumulation in food chain. Based on bioconcentration factors of the detected pyrethroids, β-cyfluthrin poses the highest adverse effect to humans while cypermethrin is the safest. Human risk assessment based on hazard index suggests that acute non-carcinogenic risk associated to consuming fish from the study location polluted with β-cyfluthrin, cypermethrin and deltamethrin is unlikely. However, hazard quotient shows that chronic non-carcinogenic risk associated to consuming fish from the study location polluted with β-cyfluthrin is likely. However, since the risk assessment was performed separately for each pyrethroid, further assessment on the impact of mixture pyrethroid to aquatic organisms and humans should be performed to explore the real impact of pyrethroids to the river system.
AB - Pyrethroid residues in the Citarum River, Indonesia, was first investigated based on their occurrences, water assimilative capacity, and risk assessment. In this paper, first, a relatively simple and efficient method was built and validated for analysis of seven pyrethroids in a river water matrix: bifenthrin, fenpropathrin, permethrin, β-cyfluthrin, cypermethrin, fenvalerate, and deltamethrin. Next, the validated method was used to analyze pyrethroids in the Citarum River. Three pyrethroids, β-cyfluthrin, cypermethrin, and deltamethrin, were detected in some sampling points with concentration up to 0.01 mg/L. Water assimilative capacity evaluation shows that β-cyfluthrin and deltamethrin pollution exceed the Citarum river water capacity. However, due to hydrophobicity properties of pyrethroids, removal through binding to sediments are expected. Ecotoxicity risk assessment shows that β-cyfluthrin, cypermethrin and deltamethrin pose risks to the aquatic organisms in the Citarum River and its tributaries through bioaccumulation in food chain. Based on bioconcentration factors of the detected pyrethroids, β-cyfluthrin poses the highest adverse effect to humans while cypermethrin is the safest. Human risk assessment based on hazard index suggests that acute non-carcinogenic risk associated to consuming fish from the study location polluted with β-cyfluthrin, cypermethrin and deltamethrin is unlikely. However, hazard quotient shows that chronic non-carcinogenic risk associated to consuming fish from the study location polluted with β-cyfluthrin is likely. However, since the risk assessment was performed separately for each pyrethroid, further assessment on the impact of mixture pyrethroid to aquatic organisms and humans should be performed to explore the real impact of pyrethroids to the river system.
KW - Ecotoxicity risk
KW - Human risk
KW - Pyrethroid
KW - Pyrethroid analysis
KW - Water assimilative capacity
U2 - 10.1016/j.chemosphere.2023.139067
DO - 10.1016/j.chemosphere.2023.139067
M3 - Article
C2 - 37279820
AN - SCOPUS:85161703343
SN - 0045-6535
VL - 335
JO - Chemosphere
JF - Chemosphere
M1 - 139067
ER -