Protein hydrolysis and fermentation under methanogenic and acidifying conditions

Thu Hang Duong*, Katja Grolle, Tran Thi Viet Nga, Grietje Zeeman, Hardy Temmink, Miriam Van Eekert

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

Background: Many kinds of wastewaters contain appreciable quantities of protein. Anaerobic processes are suitable for the treatment of wastewater high in organics to achieve pollution control and recovery of energy as methane and hydrogen, or intermediates for production of biofuels and valuable biochemicals. A distinction between protein hydrolysis and amino acid fermentation, especially for dissolved proteins, is needed to target which one is truly rate-limiting and to effectively harvest bioproducts during anaerobic conversion of these wastewaters. This study explored mesophilic anaerobic hydrolysis and amino acid fermentation of gelatine, as a model for dissolved proteins, at pH 7 and at pH 5. Results: The results showed that at pH 7, protein hydrolysis (first-order rate of 0.15 h-1) was approximately 5 times faster than acidification of the hydrolysis products (first-order rate of 0.03 h-1), implying that not hydrolysis but acidification was the rate-limiting step in anaerobic dissolved protein degradation. This was confirmed by (temporary) accumulation of amino acids. Nineteen different amino acids were detected during the first 8 incubation hours of gelatine at neutral pH and the total chemical oxygen demand (COD) of these 19 amino acids was up to approximately 40% of the COD of the gelatine that was added. Protein hydrolysis at pH 5 was 2-25 times slower than at pH 7. Shifting the initial pH from neutral to acidic conditions (pH 5) inhibited protein degradation and changed the volatile fatty acids (VFA) product profile. Furthermore, the presence or absence of methanogenic activity did not affect the rates of protein hydrolysis and acidification. Conclusions: The findings in this study can help to set a suitable solid retention time to accomplish anaerobic degradation of protein-rich wastewaters in continuous reactor systems. For example, if the target is harvesting VFAs, methanogens can be washed-out for a shorter retention time while amino acid fermentation, instead of hydrolysis as assumed previously, will govern the design and solutions to improve the system dealing with dissolved proteins.[Figure not available: see fulltext].

Original languageEnglish
Article number254
JournalBiotechnology for Biofuels
Volume12
Issue number1
DOIs
Publication statusPublished - 26 Oct 2019

Keywords

  • Amino acid fermentation
  • Hydrolysis
  • Methanogenic conditions
  • Non-methanogenic conditions
  • Proteins

Fingerprint Dive into the research topics of 'Protein hydrolysis and fermentation under methanogenic and acidifying conditions'. Together they form a unique fingerprint.

  • Cite this