TY - JOUR
T1 - Prospective bioconversion of CO2 and CO into fine chemicals via halophilic purple phototrophic bacteria
AU - Stegman, Samuel
AU - Melkonian, Chrats
AU - Tamarit, Daniel
AU - Huang-Lin, Elisa
AU - Lebrero, Raquel
AU - Cantera, Sara
PY - 2025/3
Y1 - 2025/3
N2 - Microbial conversion of cheap and problematic carbon sources, like CO2 and CO, into fine chemicals offers a promising green alternative to numerous traditionally fossil fuel-based industries such as steel, cement, and pharmaceuticals production. Purple phototrophic bacteria (PPB) are emerging as versatile key players in carbon–neutral systems due to their anoxygenic photosynthesis and diverse metabolic capabilities, enabling the transformation of carbon and nutrients into a wide range of valuable products. Traditionally positioned to treat organic carbon and produce medium-value products like bioplastics and biomass, PPB also exhibit autotrophic capabilities, enabling the valorization of waste gases, such as CO2 and CO. A key strength of PPB is their metabolic and ecological diversity, including species inhabiting saline environments. Halophilic bacteria are known producers of valuable chemicals for pharmaceutical and medical applications, such as osmolytes (ectoine, hydroxyectoine), pigments, amino acids (proline) and natural coenzymes (ubiquinone), yet halophilic PPB remain underexplored in green upcycling processes. This study identified halophilic PPB capable of transforming waste gases into health and wellness products. Through a comprehensive literature review, we compiled a list of halophilic PPB and mined their genomes for genes linked to CO₂/CO utilization as carbon sources. Further genomic search revealed genes encoding enzymes for ectoine/hydroxyectoine, proline, ubiquinone, and carotenoids (lycopene, β-carotene, spirilloxanthin, and spheroidene). We identified 276 genomes of PPB with the genomic potential to valorise CO₂/CO into health-promoting ingredients, highlighting 22 species capable of producing three or more chemicals simultaneously. These findings highlight the untapped potential of halophilic PPB as bio-platforms for sustainable pharmaceutical production.
AB - Microbial conversion of cheap and problematic carbon sources, like CO2 and CO, into fine chemicals offers a promising green alternative to numerous traditionally fossil fuel-based industries such as steel, cement, and pharmaceuticals production. Purple phototrophic bacteria (PPB) are emerging as versatile key players in carbon–neutral systems due to their anoxygenic photosynthesis and diverse metabolic capabilities, enabling the transformation of carbon and nutrients into a wide range of valuable products. Traditionally positioned to treat organic carbon and produce medium-value products like bioplastics and biomass, PPB also exhibit autotrophic capabilities, enabling the valorization of waste gases, such as CO2 and CO. A key strength of PPB is their metabolic and ecological diversity, including species inhabiting saline environments. Halophilic bacteria are known producers of valuable chemicals for pharmaceutical and medical applications, such as osmolytes (ectoine, hydroxyectoine), pigments, amino acids (proline) and natural coenzymes (ubiquinone), yet halophilic PPB remain underexplored in green upcycling processes. This study identified halophilic PPB capable of transforming waste gases into health and wellness products. Through a comprehensive literature review, we compiled a list of halophilic PPB and mined their genomes for genes linked to CO₂/CO utilization as carbon sources. Further genomic search revealed genes encoding enzymes for ectoine/hydroxyectoine, proline, ubiquinone, and carotenoids (lycopene, β-carotene, spirilloxanthin, and spheroidene). We identified 276 genomes of PPB with the genomic potential to valorise CO₂/CO into health-promoting ingredients, highlighting 22 species capable of producing three or more chemicals simultaneously. These findings highlight the untapped potential of halophilic PPB as bio-platforms for sustainable pharmaceutical production.
KW - Carbon dioxide
KW - Carbon monoxide
KW - Halophiles
KW - Health ingredients
KW - Purple phototrophic bacteria
U2 - 10.1007/s11157-025-09722-w
DO - 10.1007/s11157-025-09722-w
M3 - Short survey
AN - SCOPUS:105002016387
SN - 1569-1705
VL - 24
SP - 29
EP - 41
JO - Reviews in Environmental Science and Biotechnology
JF - Reviews in Environmental Science and Biotechnology
ER -