Proper Timing of Foot-and-Mouth Disease Vaccination of Piglets with Maternally Derived Antibodies Will Maximize Expected Protection Levels

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)

Abstract

We investigated to what extent maternally derived antibodies interfere with foot-and-mouth disease (FMD) vaccination in order to determine the factors that influence the correct vaccination for piglets. Groups of piglets with maternally derived antibodies were vaccinated at different time points following birth, and the antibody titers to FMD virus (FMDV) were measured using virus neutralization tests (VNT). We used 50 piglets from 5 sows that had been vaccinated 3 times intramuscularly in the neck during pregnancy with FMD vaccine containing strains of FMDV serotypes O, A, and Asia-1. Four groups of 10 piglets were vaccinated intramuscularly in the neck at 3, 5, 7, or 9 weeks of age using a monovalent Cedivac-FMD vaccine (serotype A TUR/14/98). One group of 10 piglets with maternally derived antibodies was not vaccinated, and another group of 10 piglets without maternally derived antibodies was vaccinated at 3 weeks of age and served as a control group. Sera samples were collected, and antibody titers were determined using VNT. In our study, the antibody responses of piglets with maternally derived antibodies vaccinated at 7 or 9 weeks of age were similar to the responses of piglets without maternally derived antibodies vaccinated at 3 weeks of age. The maternally derived antibody levels in piglets depended very strongly on the antibody titer in the sow, so the optimal time for vaccination of piglets will depend on the vaccination scheme and quality of vaccine used in the sows and should, therefore, be monitored and reviewed on regular basis in countries that use FMD prophylactic vaccination.
Original languageEnglish
Article number52
JournalFrontiers in Veterinary Science
Volume3
DOIs
Publication statusPublished - 2016

Fingerprint

Foot-and-Mouth Disease
foot-and-mouth disease
piglets
Vaccination
vaccination
antibodies
Antibodies
Neutralization Tests
sows
Vaccines
Viruses
neutralization tests
vaccines
neck
Neck
serotypes
Foot-and-Mouth Disease Virus
Foot-and-mouth disease virus
Antibody Formation
Parturition

Cite this

@article{4bf63d303dba401cb7b5ab5382874f07,
title = "Proper Timing of Foot-and-Mouth Disease Vaccination of Piglets with Maternally Derived Antibodies Will Maximize Expected Protection Levels",
abstract = "We investigated to what extent maternally derived antibodies interfere with foot-and-mouth disease (FMD) vaccination in order to determine the factors that influence the correct vaccination for piglets. Groups of piglets with maternally derived antibodies were vaccinated at different time points following birth, and the antibody titers to FMD virus (FMDV) were measured using virus neutralization tests (VNT). We used 50 piglets from 5 sows that had been vaccinated 3 times intramuscularly in the neck during pregnancy with FMD vaccine containing strains of FMDV serotypes O, A, and Asia-1. Four groups of 10 piglets were vaccinated intramuscularly in the neck at 3, 5, 7, or 9 weeks of age using a monovalent Cedivac-FMD vaccine (serotype A TUR/14/98). One group of 10 piglets with maternally derived antibodies was not vaccinated, and another group of 10 piglets without maternally derived antibodies was vaccinated at 3 weeks of age and served as a control group. Sera samples were collected, and antibody titers were determined using VNT. In our study, the antibody responses of piglets with maternally derived antibodies vaccinated at 7 or 9 weeks of age were similar to the responses of piglets without maternally derived antibodies vaccinated at 3 weeks of age. The maternally derived antibody levels in piglets depended very strongly on the antibody titer in the sow, so the optimal time for vaccination of piglets will depend on the vaccination scheme and quality of vaccine used in the sows and should, therefore, be monitored and reviewed on regular basis in countries that use FMD prophylactic vaccination.",
author = "A. Dekker and G. Ch{\'e}nard and N. Stockhofe and P.L. Eble",
year = "2016",
doi = "10.3389/fvets.2016.00052",
language = "English",
volume = "3",
journal = "Frontiers in Veterinary Science",
issn = "2297-1769",
publisher = "Frontiers Media",

}

TY - JOUR

T1 - Proper Timing of Foot-and-Mouth Disease Vaccination of Piglets with Maternally Derived Antibodies Will Maximize Expected Protection Levels

AU - Dekker, A.

AU - Chénard, G.

AU - Stockhofe, N.

AU - Eble, P.L.

PY - 2016

Y1 - 2016

N2 - We investigated to what extent maternally derived antibodies interfere with foot-and-mouth disease (FMD) vaccination in order to determine the factors that influence the correct vaccination for piglets. Groups of piglets with maternally derived antibodies were vaccinated at different time points following birth, and the antibody titers to FMD virus (FMDV) were measured using virus neutralization tests (VNT). We used 50 piglets from 5 sows that had been vaccinated 3 times intramuscularly in the neck during pregnancy with FMD vaccine containing strains of FMDV serotypes O, A, and Asia-1. Four groups of 10 piglets were vaccinated intramuscularly in the neck at 3, 5, 7, or 9 weeks of age using a monovalent Cedivac-FMD vaccine (serotype A TUR/14/98). One group of 10 piglets with maternally derived antibodies was not vaccinated, and another group of 10 piglets without maternally derived antibodies was vaccinated at 3 weeks of age and served as a control group. Sera samples were collected, and antibody titers were determined using VNT. In our study, the antibody responses of piglets with maternally derived antibodies vaccinated at 7 or 9 weeks of age were similar to the responses of piglets without maternally derived antibodies vaccinated at 3 weeks of age. The maternally derived antibody levels in piglets depended very strongly on the antibody titer in the sow, so the optimal time for vaccination of piglets will depend on the vaccination scheme and quality of vaccine used in the sows and should, therefore, be monitored and reviewed on regular basis in countries that use FMD prophylactic vaccination.

AB - We investigated to what extent maternally derived antibodies interfere with foot-and-mouth disease (FMD) vaccination in order to determine the factors that influence the correct vaccination for piglets. Groups of piglets with maternally derived antibodies were vaccinated at different time points following birth, and the antibody titers to FMD virus (FMDV) were measured using virus neutralization tests (VNT). We used 50 piglets from 5 sows that had been vaccinated 3 times intramuscularly in the neck during pregnancy with FMD vaccine containing strains of FMDV serotypes O, A, and Asia-1. Four groups of 10 piglets were vaccinated intramuscularly in the neck at 3, 5, 7, or 9 weeks of age using a monovalent Cedivac-FMD vaccine (serotype A TUR/14/98). One group of 10 piglets with maternally derived antibodies was not vaccinated, and another group of 10 piglets without maternally derived antibodies was vaccinated at 3 weeks of age and served as a control group. Sera samples were collected, and antibody titers were determined using VNT. In our study, the antibody responses of piglets with maternally derived antibodies vaccinated at 7 or 9 weeks of age were similar to the responses of piglets without maternally derived antibodies vaccinated at 3 weeks of age. The maternally derived antibody levels in piglets depended very strongly on the antibody titer in the sow, so the optimal time for vaccination of piglets will depend on the vaccination scheme and quality of vaccine used in the sows and should, therefore, be monitored and reviewed on regular basis in countries that use FMD prophylactic vaccination.

U2 - 10.3389/fvets.2016.00052

DO - 10.3389/fvets.2016.00052

M3 - Article

VL - 3

JO - Frontiers in Veterinary Science

JF - Frontiers in Veterinary Science

SN - 2297-1769

M1 - 52

ER -