TY - JOUR
T1 - Projecting terrestrial biodiversity intactness with GLOBIO 4
AU - Schipper, Aafke M.
AU - Hilbers, Jelle P.
AU - Meijer, Johan R.
AU - Antão, Laura H.
AU - Benítez-López, Ana
AU - de Jonge, Melinda M.J.
AU - Leemans, Luuk H.
AU - Scheper, Eddy
AU - Alkemade, Rob
AU - Doelman, Jonathan C.
AU - Mylius, Sido
AU - Stehfest, Elke
AU - van Vuuren, Detlef P.
AU - van Zeist, Willem Jan
AU - Huijbregts, Mark A.J.
PY - 2020/2
Y1 - 2020/2
N2 - Scenario-based biodiversity modelling is a powerful approach to evaluate how possible future socio-economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio-economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc-seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area-weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (−0.02) than the regional rivalry and fossil-fuelled development scenarios (−0.06 and −0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub-Saharan Africa. In some scenario-region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.
AB - Scenario-based biodiversity modelling is a powerful approach to evaluate how possible future socio-economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio-economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc-seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area-weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (−0.02) than the regional rivalry and fossil-fuelled development scenarios (−0.06 and −0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub-Saharan Africa. In some scenario-region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.
KW - anthropocene
KW - biodiversity scenarios
KW - global environmental change
KW - land-use downscaling
KW - mean species abundance
U2 - 10.1111/gcb.14848
DO - 10.1111/gcb.14848
M3 - Article
AN - SCOPUS:85074797561
SN - 1354-1013
VL - 26
SP - 760
EP - 771
JO - Global Change Biology
JF - Global Change Biology
IS - 2
ER -