Preferential flow of bromide, bentazon, and imidacloprid in a Dutch clay soil

R.P. Scorza Júnior, J.H. Smelt, J.J.T.I. Boesten, R.F.A. Hendriks, S.E.A.T.M. van der Zee

Research output: Contribution to journalArticleAcademicpeer-review

48 Citations (Scopus)


Leaching to ground water and tile drains are important parts of the environmental assessment of pesticides. The aims of the present study were to (i) assess the significance of preferential flow for pesticide leaching under realistic worst-case conditions for Dutch agriculture (soil profile with thick clay layer and high rainfall) and (ii) collect a high-quality data set that is suitable for testing pesticide leaching models. The movement of water, bromide, and the pesticides bentazon [3-isopropyl-1H-2, 1,3-benzothiadiazine-4(3H)-one-2,2-dioxide] and imidacloprid [1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine] was monitored in a clay soil for about 1 yr. The 1.2-ha field was located in the central part of the Netherlands (51°53' N, 5°43' E). The soil was a Eutric Fluvisol cropped with winter wheat (Triticum aestivum L.). Tile drains were present at a 0.8- to 0.9-m depth and the ground water level fluctuated between a 0.5- and 2-m depth. All chemicals were applied in spring. None of the soil concentration profiles showed bimodal concentration distributions. However, for each substance the highest concentration in drain water was found in the first drainage event after its application, which indicates preferential flow. This preferential flow is probably caused by permanent macropores that were present in the 0.3- to 1.0-m layer. At the time of the first drainage event, the drain water concentration of each substance was about an order of magnitude higher than its ground water concentration. Thus, the flux concentrations in drain water proved to be a more sensitive detector of preferential flow than the resident concentrations in the soil profile and the ground water.
Original languageEnglish
Pages (from-to)1473-1486
JournalJournal of Environmental Quality
Issue number4
Publication statusPublished - 2004


  • pesticide-leaching models
  • scale solute transport
  • tile drains
  • loam soil
  • data set
  • field
  • movement
  • sorption
  • groundwater
  • behavior

Fingerprint Dive into the research topics of 'Preferential flow of bromide, bentazon, and imidacloprid in a Dutch clay soil'. Together they form a unique fingerprint.

Cite this