Predicting the effects of DDoS attacks on a network of critical infrastructures

William Hurst, Nathan Shone, Quentin Monnet

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademicpeer-review

6 Citations (Scopus)

Abstract

Over the last decade, the level of critical infrastructure technology has been steadily transforming in order to keep pace with the growing demand for the services offered. The implementation of the smart grid, which relies on a complex and intelligent level of interconnectivity, is one example of how vital amenity provision is being refined. However, with this change, the risk of threats from the digital domain must be calculated. Superior interconnectivity between infrastructures means that the future cascading impacts of successful cyberattacks are unknown. One such threat being faced in the digital domain is the Distributed Denial of Service (DDoS) attack. A DDoS has the goal of incapacitating a server, network or service, by barraging a target with external data traffic in the form of communication requests. DDoS have the potential to cause a critical infrastructure outage, and the subsequent impact on a network of such infrastructures is yet unknown. In this paper, an approach for assessing the future impacts of a cyber-attack in a network of critical infrastructures is presented; with a focus on DDoS attacks. A simulation of a critical infrastructure network provides data to represent both normal run-time and an attack scenario. Using this dataset, a technique for assessing the future impact of disruptions on integrated critical infrastructure network, is demonstrated.

Original languageEnglish
Title of host publicationProceedings - 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015
EditorsLuigi Atzori, Xiaolong Jin, Stephen Jarvis, Lei Liu, Ramon Aguero Calvo, Jia Hu, Geyong Min, Nektarios Georgalas, Yulei Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1697-1702
Number of pages6
ISBN (Electronic)9781509001545
DOIs
Publication statusPublished - 22 Dec 2015
Externally publishedYes
Event15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015 - Liverpool, United Kingdom
Duration: 26 Oct 201528 Oct 2015

Publication series

NameProceedings - 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015

Conference

Conference15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015
CountryUnited Kingdom
CityLiverpool
Period26/10/1528/10/15

Keywords

  • Cascading failure
  • Critical infrastructure
  • Cyber-attack distributed denial of service
  • Simulation

Fingerprint Dive into the research topics of 'Predicting the effects of DDoS attacks on a network of critical infrastructures'. Together they form a unique fingerprint.

Cite this