Predicting habitat affinities of plant species using commonly measured functional traits

B. Shipley*, M. Belluau, I. Kuhn, N.A. Soudzilovskaia, M. Bahn, J. Penuelas, J. Kattge, L. Sack, J. Cavender-Bares, W.A. Ozinga, B. Blonders, P.M. van Bodegom, P. Manning, T. Hickler, E. Sosinski, V.D. Pillar, V.G. Onipchenko, P. Poschlod

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

19 Citations (Scopus)

Abstract

Questions Heinz Ellenberg classically defined “indicator” scores for species representing their typical positions along gradients of key environmental variables, and these have proven very useful for designating ecological distributions. We tested a key tenent of trait-based ecology, i.e. the ability to predict ecological preferences from species’ traits. More specifically, can we predict Ellenberg indicator scores for soil nutrients, soil moisture and irradiance from four well-studied traits: leaf area, leaf dry matter content, specific leaf area (SLA) and seed mass? Can we use such relationships to estimate Ellenberg scores for species never classified by Ellenberg? Location Global. Methods Cumulative link models were developed to predict Ellenberg nutrients, irradiance and moisture values from Ln-transformed trait values using 922, 981 and 988 species, respectively. We then independently tested these prediction equations using the trait values of 423 and 421 new species that occurred elsewere in Europe, North America and Morocco, and whose habitat affinities we could classify from independent sources as three-level ordinal ranks related to soil moisture and irradiance. The traits were SLA, leaf dry matter content, leaf area and seed mass. Results The four functional traits predicted the Ellenberg indicator scores of site fertility, light and moisture with average error rates of <2 Ellenberg ranks out of nine. We then used the trait values of 423 and 421 species, respectively, that occurred (mostly) outside of Germany but whose habitat affinities we could classify as three-level ordinal ranks related to soil moisture and irradiance. The predicted positions of the new species, given the equations derived from the Ellenberg indices, agreed well with their independent habitat classifications, although our equation for Ellenberg irrandiance levels performed poorly on the lower ranks. Conclusions These prediction equations, and their eventual extensions, could be used to provide approximate descriptions of habitat affinities of large numbers of species worldwide.
Original languageEnglish
Pages (from-to)1082-1095
JournalJournal of Vegetation Science
Volume28
Issue number5
DOIs
Publication statusPublished - 2017

Fingerprint Dive into the research topics of 'Predicting habitat affinities of plant species using commonly measured functional traits'. Together they form a unique fingerprint.

  • Projects

    Cite this

    Shipley, B., Belluau, M., Kuhn, I., Soudzilovskaia, N. A., Bahn, M., Penuelas, J., Kattge, J., Sack, L., Cavender-Bares, J., Ozinga, W. A., Blonders, B., van Bodegom, P. M., Manning, P., Hickler, T., Sosinski, E., Pillar, V. D., Onipchenko, V. G., & Poschlod, P. (2017). Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 28(5), 1082-1095. https://doi.org/10.1111/jvs.12554