Precision of subnational forest AGB estimates within the Peruvian Amazonia using a global biomass map

Natalia Málaga*, Sytze De Bruin, Ronald E. Mcroberts, Alexs Arana Olivos, Ricardo De La Cruz Paiva, Patricia Durán Montesinos, Daniela Requena Suarez, Martin Herold

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)


National forest inventories (NFI) provide essential forest-related biomass and carbon information for country greenhouse gas (GHG) accounting systems. Several tropical countries struggle to execute their NFIs while the extent to which space-based global information on aboveground biomass (AGB) can support national GHG accounting is under investigation. We assess whether the use of a global AGB map as auxiliary information produces a gain in precision of subnational AGB estimates for the Peruvian Amazonia. We used model-assisted estimators with data from the country’s NFI and explored hybrid inferential techniques to account for the sources of uncertainty associated with the integration of remote sensing-based products and NFI plot data.
Our results show that the selected global biomass map tends to overestimate AGB values across the Peruvian Amazonia. For most strata, directly using the map in its published form did not reduce the precision of AGB estimates. However, after calibrating the map using the NFI data, the precision of our map-assisted AGB estimates increased by up to 50% at stratum level and 20% at Amazonia level. We further demonstrate how different sources of uncertainties can be incorporated in the map-NFI integrated estimates. With the hybrid inferential analysis, we found that the small spatial support of the NFI plots compared to the remote sensing-based sample units of aggregated pixels (within block variability) contributed the most to the total uncertainty associated with the AGB estimates from our map-NFI integration. Uncertainties caused by measurement variability and allometric model prediction uncertainty were the second largest contributors. When these uncertainties were incorporated, the increase in precision of our calibrated map-assisted AGB estimates was negligible, probably hindered by the great contribution of the within block variability to our map-plot assessment. We developed a reproducible method that countries can build upon and further improve while the global biomass products continue to evolve and better characterize the AGB distribution under large biomass conditions. We encourage further cross-country case studies that reflect a wider range of AGB distributions, especially within humid tropical forests, to further assess the contribution of global biomass maps to (sub)national AGB estimates and finally GHG monitoring and reporting.
Original languageEnglish
Article number103102
JournalInternational Journal of applied Earth Observation and Geoinformation
Publication statusPublished - 18 Nov 2022


Dive into the research topics of 'Precision of subnational forest AGB estimates within the Peruvian Amazonia using a global biomass map'. Together they form a unique fingerprint.
  • OEMC: Open-Earth-Monitor Cyberinfrastructure


    Project: EU research project

Cite this