TY - JOUR
T1 - Potential impact of meat replacers on nutrient quality and greenhouse gas emissions of diets in four European countries
AU - Mertens, Elly
AU - Biesbroek, Sander
AU - Dofková, Marcela
AU - Mistura, Lorenza
AU - D'Addezio, Laura
AU - Turrini, Aida
AU - Dubuisson, Carine
AU - Havard, Sabrina
AU - Trolle, Ellen
AU - Geleijnse, Johanna M.
AU - van 't Veer, Pieter
PY - 2020/9
Y1 - 2020/9
N2 - Meat replacers could play a role in achieving more plant-based diets, but their current consumption is limited. The present modelling study aimed to explore the nutritional and greenhouse gas emissions impacts of meat replacers. Using dietary surveys from Denmark, Czech Republic, Italy and France (~6500 adults), we composed alternative diets in which all the meat in the observed diet (in grams) was substituted by similar use meat replacers (with and without fortification). Starting from the observed diets and meat-replacement diets, diets with improved adherence to food-based dietary guidelines (FBDGs) were modelled using Data Envelopment Analysis. These improved diets were then further optimised for dietary preferences (MaxP, diet similarity index), nutrient quality (MaxH, Nutrient Rich Diet score, NRD15.3) or diet-related greenhouse gas emissions (GHGE) (MaxS, CO2 equivalents). In all optimised modelled diets, the total amount of meat was lower than in the observed diets, i.e., 30% lower in the MaxP, 50% lower in the MaxH, and 75% lower in the MaxS diets. In the MaxP diet, NRD15.3 was ~6% higher, GHGE was ~9% lower, and ~83% of food intake remained similar. In the MaxH diet, NRD15.3 was ~17% higher, GHGE was ~15% lower, and ~66% of food intake remained similar. In the MaxS diet, NRD15.3 was ~9% higher, GHGE was ~33% lower, and ~65% of food intake remained similar. When using fortified meat replacers, for all modelled diets, the diet similarity was on average 2% lower and the GHGE reduction was on average 3% higher as compared with the same scenarios without fortification. This analysis showed that meat replacers, provided their preference is similar to meat, can provide benefits for GHGE, without necessarily compromising nutrient quality.
AB - Meat replacers could play a role in achieving more plant-based diets, but their current consumption is limited. The present modelling study aimed to explore the nutritional and greenhouse gas emissions impacts of meat replacers. Using dietary surveys from Denmark, Czech Republic, Italy and France (~6500 adults), we composed alternative diets in which all the meat in the observed diet (in grams) was substituted by similar use meat replacers (with and without fortification). Starting from the observed diets and meat-replacement diets, diets with improved adherence to food-based dietary guidelines (FBDGs) were modelled using Data Envelopment Analysis. These improved diets were then further optimised for dietary preferences (MaxP, diet similarity index), nutrient quality (MaxH, Nutrient Rich Diet score, NRD15.3) or diet-related greenhouse gas emissions (GHGE) (MaxS, CO2 equivalents). In all optimised modelled diets, the total amount of meat was lower than in the observed diets, i.e., 30% lower in the MaxP, 50% lower in the MaxH, and 75% lower in the MaxS diets. In the MaxP diet, NRD15.3 was ~6% higher, GHGE was ~9% lower, and ~83% of food intake remained similar. In the MaxH diet, NRD15.3 was ~17% higher, GHGE was ~15% lower, and ~66% of food intake remained similar. In the MaxS diet, NRD15.3 was ~9% higher, GHGE was ~33% lower, and ~65% of food intake remained similar. When using fortified meat replacers, for all modelled diets, the diet similarity was on average 2% lower and the GHGE reduction was on average 3% higher as compared with the same scenarios without fortification. This analysis showed that meat replacers, provided their preference is similar to meat, can provide benefits for GHGE, without necessarily compromising nutrient quality.
KW - Diet modelling
KW - Environmental impact
KW - Greenhouse gas emissions
KW - Nutritional quality
KW - Preferable
KW - Scenario analysis
U2 - 10.3390/SU12176838
DO - 10.3390/SU12176838
M3 - Article
AN - SCOPUS:85090771208
SN - 2071-1050
VL - 12
JO - Sustainability
JF - Sustainability
IS - 17
M1 - 6838
ER -