TY - JOUR
T1 - Postprocessing continental-scale, medium-range ensemble streamflow forecasts in South America using Ensemble Model Output Statistics and Ensemble Copula Coupling
AU - Siqueira, Vinícius Alencar
AU - Weerts, Albrecht
AU - Klein, Bastian
AU - Fan, Fernando Mainardi
AU - Dias de Paiva, Rodrigo Cauduro
AU - Collischonn, Walter
PY - 2021
Y1 - 2021
N2 - Probabilistic hydrological forecasting and ensemble techniques have leveraged streamflow prediction at regional to continental scales up to several weeks in advance. However, ensembles that only account for meteorological forecast uncertainty are typically biased and subject to dispersion errors, thus limiting their use for rational decision-making and optimization systems. Statistical postprocessing is therefore necessary to convert ensemble forecasts into calibrated and sharp predictive distributions, and it should also account for dependencies between lead times to enable realistic forecast trajectories. This work provides a continental-scale assessment of the use of statistical postprocessing on medium-range, ensemble streamflow forecasts over South America (SA). These forecasts were produced through a large-scale hydrologic–hydrodynamic model forced with a global precipitation dataset and ECMWF reforecast data. The Ensemble Model Output Statistics (EMOS) technique was used to generate conditional predictive distributions in 488 locations at each forecast lead time, while the Ensemble Copula Coupling method with the transformation scheme (ECC-T) was applied to derive ensemble traces from EMOS distributions. Postprocessed streamflow forecasts were cross-validated for the period from 1996 to 2014 using a range of verification metrics. Results showed that the skill and reliability of EMOS forecasts substantially improve over the raw ensembles, and that EMOS leads to skillful predictions relative to discharge climatology and persistence forecasts up to 15 days in advance in most locations. Furthermore, EMOS results in predictive distributions that are generally sharper than the climatology. Limitations in depicting autocorrelations of forecast trajectories were observed in rivers for which the raw ensemble spread is very low and EMOS has to largely increase dispersion, especially at short lead times. The study's findings suggest that combining a continental-scale hydrological model with EMOS and ECC-T methods can lead to skillful predictions and realistic ensemble traces in several locations in SA, even if in situ hydrometeorological observations are not available in real time.
AB - Probabilistic hydrological forecasting and ensemble techniques have leveraged streamflow prediction at regional to continental scales up to several weeks in advance. However, ensembles that only account for meteorological forecast uncertainty are typically biased and subject to dispersion errors, thus limiting their use for rational decision-making and optimization systems. Statistical postprocessing is therefore necessary to convert ensemble forecasts into calibrated and sharp predictive distributions, and it should also account for dependencies between lead times to enable realistic forecast trajectories. This work provides a continental-scale assessment of the use of statistical postprocessing on medium-range, ensemble streamflow forecasts over South America (SA). These forecasts were produced through a large-scale hydrologic–hydrodynamic model forced with a global precipitation dataset and ECMWF reforecast data. The Ensemble Model Output Statistics (EMOS) technique was used to generate conditional predictive distributions in 488 locations at each forecast lead time, while the Ensemble Copula Coupling method with the transformation scheme (ECC-T) was applied to derive ensemble traces from EMOS distributions. Postprocessed streamflow forecasts were cross-validated for the period from 1996 to 2014 using a range of verification metrics. Results showed that the skill and reliability of EMOS forecasts substantially improve over the raw ensembles, and that EMOS leads to skillful predictions relative to discharge climatology and persistence forecasts up to 15 days in advance in most locations. Furthermore, EMOS results in predictive distributions that are generally sharper than the climatology. Limitations in depicting autocorrelations of forecast trajectories were observed in rivers for which the raw ensemble spread is very low and EMOS has to largely increase dispersion, especially at short lead times. The study's findings suggest that combining a continental-scale hydrological model with EMOS and ECC-T methods can lead to skillful predictions and realistic ensemble traces in several locations in SA, even if in situ hydrometeorological observations are not available in real time.
KW - ECC
KW - EMOS
KW - Ensemble forecasting
KW - Medium-range
KW - Post-processing
KW - South America
U2 - 10.1016/j.jhydrol.2021.126520
DO - 10.1016/j.jhydrol.2021.126520
M3 - Article
AN - SCOPUS:85107969428
SN - 0022-1694
VL - 600
JO - Journal of Hydrology
JF - Journal of Hydrology
M1 - 126520
ER -