Plasticity in colloidal gel strands

Joanne E. Verweij, Frans A.M. Leermakers, Joris Sprakel, Jasper Van Der Gucht*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)


Colloidal gels are space-spanning networks of aggregated particles. The mechanical response of colloidal gels is governed, to a large extent, by the properties of the individual gel strands. To study how colloidal gels respond to repeated deformations, we perform Brownian dynamics simulations on single strands of aggregated colloidal particles. While current models assume that gel failure is due to the brittle rupture of gel strands, our simulations show that gel strands undergo large plastic deformations prior to breaking. Rearrangement of particles within the strands leads to plastic lengthening and softening of the strands, which may ultimately lead to strand necking and ductile failure. This failure mechanism occurs irrespective of the thickness and length of the strands and the range and strength of the interaction potential. Rupture of gel strands is more likely for long and thin strands and for a long-ranged interaction potential.

Original languageEnglish
Pages (from-to)6447-6454
Number of pages8
JournalSoft Matter
Issue number32
Publication statusPublished - 16 Jul 2019


Dive into the research topics of 'Plasticity in colloidal gel strands'. Together they form a unique fingerprint.

Cite this