Plant factories; crop transpiration and energy balance

Luuk Graamans*, Andy van den Dobbelsteen, Esther Meinen, Cecilia Stanghellini

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

107 Citations (Scopus)

Abstract

Population growth and rapid urbanisation may result in a shortage of food supplies for cities in the foreseeable future. Research on closed plant production systems, such as plant factories, has attempted to offer perspectives for robust (urban) agricultural systems. Insight into the explicit role of plant processes in the total energy balance of these production systems is required to determine their potential. We describe a crop transpiration model that is able to determine the relation between sensible and latent heat exchange, as well as the corresponding vapour flux for the production of lettuce in closed systems. Subsequently, this model is validated for the effect of photosynthetic photon flux, cultivation area cover and air humidity on lettuce transpiration, using literature research and experiments. Results demonstrate that the transpiration rate was accurately simulated for the aforementioned effects. Thereafter we quantify and discuss the energy productivity of a standardised plant factory and illustrate the importance of transpiration as a design parameter for climatisation. Our model can provide a greater insight into the energetic expenditure and performance of closed systems. Consequently, it can provide a starting point for determining the viability and optimisation of plant factories.
Original languageEnglish
Pages (from-to)138-147
JournalAgricultural Systems
Volume153
DOIs
Publication statusPublished - 2017

Keywords

  • Artificial lighting
  • Dehumidification
  • Lettuce
  • Penman-Monteith
  • Urban agriculture
  • Vertical farm

Fingerprint

Dive into the research topics of 'Plant factories; crop transpiration and energy balance'. Together they form a unique fingerprint.

Cite this