TY - JOUR
T1 - Photoactivation of the nematicidal compound alpha-terthienyl from roots of marigolds (Tagetes species) a possible singlet oxygen role
AU - Bakker, J.
AU - Gommers, F.J.
AU - Nieuwenhuis, I.
AU - Wynberg, H.
PY - 1979
Y1 - 1979
N2 - The nematicidal compound alpha-terthienyl from roots of Tagetes species generates upon irradiation with near ultraviolet light reactive oxygen species on which the in vitro nematicidal activity depends. This system was studied by following the inhibition of glucose-6-phosphate dehydrogenase by photoactivated alpha-terthienyl and protection of the enzyme activity in the absence of oxygen and by various additions. Addition of mannitol, benzoate, superoxide dismutase or catalase did not have any effect nor did H2O2. This suggests that OH., O-.2, and H2O2 are not the reactive oxygen species involved. The enzyme was protected against photoactivated alpha-terthienyl in air-saturated solutions by singlet oxygen quenchers such as histidine, methionine, tryptophan, bovine serum albumin, and NaN3. Furthermore, inactivation of the enzyme was about 3.5 times faster in D2O than in H2O. When alpha-terthienyl in CH2Cl2 was irradiated in the presence of the olefin adamantylideneadamantane, a stable dioxetane was formed which decomposed to adamantanone when heated above its melting point. These results indicate a singlet oxygen-mediated process.
AB - The nematicidal compound alpha-terthienyl from roots of Tagetes species generates upon irradiation with near ultraviolet light reactive oxygen species on which the in vitro nematicidal activity depends. This system was studied by following the inhibition of glucose-6-phosphate dehydrogenase by photoactivated alpha-terthienyl and protection of the enzyme activity in the absence of oxygen and by various additions. Addition of mannitol, benzoate, superoxide dismutase or catalase did not have any effect nor did H2O2. This suggests that OH., O-.2, and H2O2 are not the reactive oxygen species involved. The enzyme was protected against photoactivated alpha-terthienyl in air-saturated solutions by singlet oxygen quenchers such as histidine, methionine, tryptophan, bovine serum albumin, and NaN3. Furthermore, inactivation of the enzyme was about 3.5 times faster in D2O than in H2O. When alpha-terthienyl in CH2Cl2 was irradiated in the presence of the olefin adamantylideneadamantane, a stable dioxetane was formed which decomposed to adamantanone when heated above its melting point. These results indicate a singlet oxygen-mediated process.
U2 - 10.1016/S0021-9258(17)37732-3
DO - 10.1016/S0021-9258(17)37732-3
M3 - Article
SN - 0021-9258
VL - 254
SP - 1841
EP - 1844
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
ER -