TY - JOUR
T1 - pH-Responsive Elastin-Like Polypeptide Designer Condensates
AU - de Haas, Rob
AU - Ganar, Ketan
AU - Deshpande, Siddharth
AU - de Vries, Renko
PY - 2023/9/27
Y1 - 2023/9/27
N2 - Biomolecular condensates are macromolecular complexes formed by liquid–liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells
AB - Biomolecular condensates are macromolecular complexes formed by liquid–liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells
U2 - 10.1021/acsami.3c11314
DO - 10.1021/acsami.3c11314
M3 - Article
SN - 1944-8244
VL - 15
SP - 45336
EP - 45344
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 38
ER -