Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development

Dirkjan Schokker, Alfons J.M. Jansman, Gosse Veninga, Naomi de Bruin, Stephanie A. Vastenhouw, Freddy M. de Bree, Alex Bossers, Johanna M.J. Rebel, Mari A. Smits

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)

Abstract

Background: Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa.
Results: We investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens. Perturbation was induced by administering 0.8 mg amoxicillin per bird per day) via the drinking water for a period of 24 h. Effects of the perturbation were measured by 16S rRNA profiling of the microbiome and whole genome gene expression analysis. In parallel to what has been observed for other animal species, we hypothesized that such an intervention may have negative impact on immune development.
Trends were observed in changes of the composition and diversity of the microbiome when comparing antibiotic treated birds with their controls. in the jejunum, the expression of numerous genes changed, which potentially leads to changes in biological activities of the small intestinal mucosa. Validation of the predicted functional changes was performed by staining immune cells in the small intestinal mucosa and a reduction in the number of macrophage-like (KUL01+) cells was observed due to a direct or indirect effect of the antibiotic treatment. We provide evidence that a short, early life antibiotic treatment affects both the intestinal microbiota (temporarily) and mucosal gene expression over a period of 2 weeks.
Conclusion: These results underscore the importance of early life microbial colonization of the gut in relation to immune development and the necessity to explore the capabilities of a variety of early life dietary and/or environmental factors to modulate the programming for immune competence in broilers.
Original languageEnglish
Article number241
Number of pages14
JournalBMC Genomics
Volume18
DOIs
Publication statusPublished - 2017

Fingerprint

Microbiota
Chickens
Anti-Bacterial Agents
Intestinal Mucosa
Jejunum
Gene Expression
Mental Competency
Birds
Amoxicillin
Drinking Water
Macrophages
Genome
Staining and Labeling
Bacteria
Gastrointestinal Microbiome

Cite this

@article{4b8f5245bfbd4843bf1d6e5002869f70,
title = "Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development",
abstract = "Background: Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa.Results: We investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens. Perturbation was induced by administering 0.8 mg amoxicillin per bird per day) via the drinking water for a period of 24 h. Effects of the perturbation were measured by 16S rRNA profiling of the microbiome and whole genome gene expression analysis. In parallel to what has been observed for other animal species, we hypothesized that such an intervention may have negative impact on immune development.Trends were observed in changes of the composition and diversity of the microbiome when comparing antibiotic treated birds with their controls. in the jejunum, the expression of numerous genes changed, which potentially leads to changes in biological activities of the small intestinal mucosa. Validation of the predicted functional changes was performed by staining immune cells in the small intestinal mucosa and a reduction in the number of macrophage-like (KUL01+) cells was observed due to a direct or indirect effect of the antibiotic treatment. We provide evidence that a short, early life antibiotic treatment affects both the intestinal microbiota (temporarily) and mucosal gene expression over a period of 2 weeks.Conclusion: These results underscore the importance of early life microbial colonization of the gut in relation to immune development and the necessity to explore the capabilities of a variety of early life dietary and/or environmental factors to modulate the programming for immune competence in broilers.",
author = "Dirkjan Schokker and Jansman, {Alfons J.M.} and Gosse Veninga and {de Bruin}, Naomi and Vastenhouw, {Stephanie A.} and {de Bree}, {Freddy M.} and Alex Bossers and Rebel, {Johanna M.J.} and Smits, {Mari A.}",
year = "2017",
doi = "10.1186/s12864-017-3625-6",
language = "English",
volume = "18",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "Springer Verlag",

}

Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. / Schokker, Dirkjan; Jansman, Alfons J.M.; Veninga, Gosse; de Bruin, Naomi; Vastenhouw, Stephanie A.; de Bree, Freddy M.; Bossers, Alex; Rebel, Johanna M.J.; Smits, Mari A.

In: BMC Genomics, Vol. 18, 241, 2017.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development

AU - Schokker, Dirkjan

AU - Jansman, Alfons J.M.

AU - Veninga, Gosse

AU - de Bruin, Naomi

AU - Vastenhouw, Stephanie A.

AU - de Bree, Freddy M.

AU - Bossers, Alex

AU - Rebel, Johanna M.J.

AU - Smits, Mari A.

PY - 2017

Y1 - 2017

N2 - Background: Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa.Results: We investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens. Perturbation was induced by administering 0.8 mg amoxicillin per bird per day) via the drinking water for a period of 24 h. Effects of the perturbation were measured by 16S rRNA profiling of the microbiome and whole genome gene expression analysis. In parallel to what has been observed for other animal species, we hypothesized that such an intervention may have negative impact on immune development.Trends were observed in changes of the composition and diversity of the microbiome when comparing antibiotic treated birds with their controls. in the jejunum, the expression of numerous genes changed, which potentially leads to changes in biological activities of the small intestinal mucosa. Validation of the predicted functional changes was performed by staining immune cells in the small intestinal mucosa and a reduction in the number of macrophage-like (KUL01+) cells was observed due to a direct or indirect effect of the antibiotic treatment. We provide evidence that a short, early life antibiotic treatment affects both the intestinal microbiota (temporarily) and mucosal gene expression over a period of 2 weeks.Conclusion: These results underscore the importance of early life microbial colonization of the gut in relation to immune development and the necessity to explore the capabilities of a variety of early life dietary and/or environmental factors to modulate the programming for immune competence in broilers.

AB - Background: Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa.Results: We investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens. Perturbation was induced by administering 0.8 mg amoxicillin per bird per day) via the drinking water for a period of 24 h. Effects of the perturbation were measured by 16S rRNA profiling of the microbiome and whole genome gene expression analysis. In parallel to what has been observed for other animal species, we hypothesized that such an intervention may have negative impact on immune development.Trends were observed in changes of the composition and diversity of the microbiome when comparing antibiotic treated birds with their controls. in the jejunum, the expression of numerous genes changed, which potentially leads to changes in biological activities of the small intestinal mucosa. Validation of the predicted functional changes was performed by staining immune cells in the small intestinal mucosa and a reduction in the number of macrophage-like (KUL01+) cells was observed due to a direct or indirect effect of the antibiotic treatment. We provide evidence that a short, early life antibiotic treatment affects both the intestinal microbiota (temporarily) and mucosal gene expression over a period of 2 weeks.Conclusion: These results underscore the importance of early life microbial colonization of the gut in relation to immune development and the necessity to explore the capabilities of a variety of early life dietary and/or environmental factors to modulate the programming for immune competence in broilers.

U2 - 10.1186/s12864-017-3625-6

DO - 10.1186/s12864-017-3625-6

M3 - Article

VL - 18

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

M1 - 241

ER -