TY - JOUR
T1 - Peroxisome proliferator-activated receptor-γ coactivator-1 and insulin resistance: Acute effect of fatty acids
AU - Hoeks, J.
AU - Hesselink, M.K.C.
AU - Russell, A.P.
AU - Mensink, M.
AU - Saris, W.H.M.
AU - Mensink, R.P.
AU - Schrauwen, P.
PY - 2006/10
Y1 - 2006/10
N2 - Aims/hypothesis: Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PPARGC1), a coactivator regulating the transcription of genes involved in oxidative metabolism, is downregulated in patients with type 2 diabetes and in their first-degree relatives. Whether this downregulation is a cause or effect of early aberrations in the development of insulin resistance, such as disturbances in fat metabolism, is unknown. We examined whether lipid-induced insulin resistance was associated with downregulation of expression of skeletal muscle genes involved in oxidative metabolism and mitochondrial biogenesis in humans. Materials and methods: Nine healthy lean male subjects underwent a 6-h hyperinsulinaemic-euglycaemic clamp with simultaneous infusion of either a lipid emulsion or glycerol as a control. Blood was sampled at regular time points and muscle biopsies were taken before and after every test. Intramuscular triacylglycerol (IMTG) content was determined by Oil Red O staining and gene expression was measured by quantitative PCR. Results: Lipid infusion resulted in a ∼2.7-fold increase in plasma NEFA levels and a 31±6% decrease in insulin sensitivity (p=0.001). The infusion of lipids resulted in a ∼1.6-fold increase in IMTG (p=0.02), whereas during the clamp with glycerol infusion IMTG tended to decrease to ∼53% of preinfusion levels (p=0.065). Lipid infusion decreased PPARGC1A, PPARGC1B and PPARA expression to ∼61, 77 and ∼52% of basal values respectively, whereas expression of uncoupling protein 3 was upregulated 1.8-fold (all p<0.05). Conclusions/interpretation: Acute elevation of plasma NEFA levels, leading to muscular fat accumulation and insulin resistance, downregulates PPARGC1A, PPARGC1B and PPARA expression, suggesting that the decrease in PPARGC1 expression observed in the (pre)diabetic state may be the result, rather than the cause of lipid-induced insulin resistance.
AB - Aims/hypothesis: Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PPARGC1), a coactivator regulating the transcription of genes involved in oxidative metabolism, is downregulated in patients with type 2 diabetes and in their first-degree relatives. Whether this downregulation is a cause or effect of early aberrations in the development of insulin resistance, such as disturbances in fat metabolism, is unknown. We examined whether lipid-induced insulin resistance was associated with downregulation of expression of skeletal muscle genes involved in oxidative metabolism and mitochondrial biogenesis in humans. Materials and methods: Nine healthy lean male subjects underwent a 6-h hyperinsulinaemic-euglycaemic clamp with simultaneous infusion of either a lipid emulsion or glycerol as a control. Blood was sampled at regular time points and muscle biopsies were taken before and after every test. Intramuscular triacylglycerol (IMTG) content was determined by Oil Red O staining and gene expression was measured by quantitative PCR. Results: Lipid infusion resulted in a ∼2.7-fold increase in plasma NEFA levels and a 31±6% decrease in insulin sensitivity (p=0.001). The infusion of lipids resulted in a ∼1.6-fold increase in IMTG (p=0.02), whereas during the clamp with glycerol infusion IMTG tended to decrease to ∼53% of preinfusion levels (p=0.065). Lipid infusion decreased PPARGC1A, PPARGC1B and PPARA expression to ∼61, 77 and ∼52% of basal values respectively, whereas expression of uncoupling protein 3 was upregulated 1.8-fold (all p<0.05). Conclusions/interpretation: Acute elevation of plasma NEFA levels, leading to muscular fat accumulation and insulin resistance, downregulates PPARGC1A, PPARGC1B and PPARA expression, suggesting that the decrease in PPARGC1 expression observed in the (pre)diabetic state may be the result, rather than the cause of lipid-induced insulin resistance.
KW - Fatty acids
KW - Insulin resistance
KW - Lipid metabolism
KW - PGC1
KW - Type 2 diabetes mellitus
U2 - 10.1007/s00125-006-0369-2
DO - 10.1007/s00125-006-0369-2
M3 - Article
C2 - 16896940
AN - SCOPUS:33748485573
SN - 0012-186X
VL - 49
SP - 2419
EP - 2426
JO - Diabetologia
JF - Diabetologia
IS - 10
ER -