Performance and long distance data acquisition via LoRa technology of a tubular plant microbial fuel cell located in a paddy field in West Kalimantan, Indonesia

Emilius Sudirjo*, Pim De Jager, Cees J.N. Buisman, David P.B.T.B. Strik

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

A Plant Microbial Fuel Cell (Plant-MFCs) has been studied both in the lab and in a field. So far, field studies were limited to a more conventional Plant-MFC design, which submerges the anode in the soil and places the cathode above the soil surface. However, for a large scale application a tubular Plant-MFC is considered more practical since it needs no topsoil excavation. In this study, 1 m length tubular design Plant-MFC was installed in triplicate in a paddy field located in West Kalimantan, Indonesia. The Plant-MFC reactors were operated for four growing seasons. The rice paddy was grown in a standard cultivation process without any additional treatment due to the reactor instalation. An online data acquisition using LoRa technology was developed to investigate the performance of the tubular Plant-MFC over the final whole rice paddy growing season. Overall, the four crop seasons, the Plant-MFC installation did not show a complete detrimental negative effect on rice paddy growth. Based on continuous data analysis during the fourth crop season, a continuous electricity generation was achieved during a wet period in the crop season. Electricity generation dynamics were observed before, during and after the wet periods that were explained by paddy field management. A maximum daily average density from the triplicate Plant-MFCs reached 9.6 mW/m2 plant growth area. In one crop season, 9.5-15 Wh/m2 electricity can be continuously generated at an average of 0.4 ± 0.1 mW per meter tube. The Plant-MFC also shows a potential to be used as a bio sensor, e.g., rain event indicator, during a dry period between the crop seasons.

Original languageEnglish
Article number4647
JournalSensors (Switzerland)
Volume19
Issue number21
DOIs
Publication statusPublished - 25 Oct 2019

Keywords

  • Bioelectrochemical system
  • Electricity
  • LoRa
  • Paddy fields
  • Plant;microbial fuel cell
  • Rice
  • Tubular

Fingerprint

Dive into the research topics of 'Performance and long distance data acquisition via LoRa technology of a tubular plant microbial fuel cell located in a paddy field in West Kalimantan, Indonesia'. Together they form a unique fingerprint.

Cite this