Pasta regrind: The effect of drying temperature on its functionality as a novel ingredient

Marianna Tagliasco, Vincenzo Fogliano, Nicoletta Pellegrini*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Cutting and drying steps in pasta production result in by-products, named pasta regrind, which are used mainly as animal feed. Pasta regrind could be a valuable ingredient butits techno-functional properties need to be studied also in relation to the pasta drying process. Hence, the effect of three different drying temperatures, low (LT), high (HT) and extremely high (XHT) on the techno-functional properties of pasta regrind was investigated. Increasing drying temperature increased the water-retention capacity of pasta regrind. Semolina-based bread was selected as a model system to use pasta regrind as a functional ingredient. Bread was made with different percentages (w/w) of pasta regrind (10%, 25%, 50% 100% of HT, 25% of LT and 25% of XHT) mixed with semolina flour. The addition of HT regrind increased the hardness of the crumb whereas decreased bread volume. 25% LT regrinds had no effect on the bread crumb's hardness and porosity compared to 100% semolina bread. Confocal laser scanning microscopy revealed a dense gluten network only in 25% LT bread. Therefore, HT and XHT regrinds are not suitable ingredients for leavened products while LT regrind can be efficiently used for bread production.

Original languageEnglish
Article number100230
JournalFood Structure
Volume30
DOIs
Publication statusPublished - Oct 2021

Keywords

  • Confocal laser scanning microscopy
  • Pasta regrinds
  • Semolina-bread
  • Techno-functional properties
  • Waste-management

Fingerprint

Dive into the research topics of 'Pasta regrind: The effect of drying temperature on its functionality as a novel ingredient'. Together they form a unique fingerprint.

Cite this