TY - JOUR
T1 - Pasta regrind
T2 - The effect of drying temperature on its functionality as a novel ingredient
AU - Tagliasco, Marianna
AU - Fogliano, Vincenzo
AU - Pellegrini, Nicoletta
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10
Y1 - 2021/10
N2 - Cutting and drying steps in pasta production result in by-products, named pasta regrind, which are used mainly as animal feed. Pasta regrind could be a valuable ingredient butits techno-functional properties need to be studied also in relation to the pasta drying process. Hence, the effect of three different drying temperatures, low (LT), high (HT) and extremely high (XHT) on the techno-functional properties of pasta regrind was investigated. Increasing drying temperature increased the water-retention capacity of pasta regrind. Semolina-based bread was selected as a model system to use pasta regrind as a functional ingredient. Bread was made with different percentages (w/w) of pasta regrind (10%, 25%, 50% 100% of HT, 25% of LT and 25% of XHT) mixed with semolina flour. The addition of HT regrind increased the hardness of the crumb whereas decreased bread volume. 25% LT regrinds had no effect on the bread crumb's hardness and porosity compared to 100% semolina bread. Confocal laser scanning microscopy revealed a dense gluten network only in 25% LT bread. Therefore, HT and XHT regrinds are not suitable ingredients for leavened products while LT regrind can be efficiently used for bread production.
AB - Cutting and drying steps in pasta production result in by-products, named pasta regrind, which are used mainly as animal feed. Pasta regrind could be a valuable ingredient butits techno-functional properties need to be studied also in relation to the pasta drying process. Hence, the effect of three different drying temperatures, low (LT), high (HT) and extremely high (XHT) on the techno-functional properties of pasta regrind was investigated. Increasing drying temperature increased the water-retention capacity of pasta regrind. Semolina-based bread was selected as a model system to use pasta regrind as a functional ingredient. Bread was made with different percentages (w/w) of pasta regrind (10%, 25%, 50% 100% of HT, 25% of LT and 25% of XHT) mixed with semolina flour. The addition of HT regrind increased the hardness of the crumb whereas decreased bread volume. 25% LT regrinds had no effect on the bread crumb's hardness and porosity compared to 100% semolina bread. Confocal laser scanning microscopy revealed a dense gluten network only in 25% LT bread. Therefore, HT and XHT regrinds are not suitable ingredients for leavened products while LT regrind can be efficiently used for bread production.
KW - Confocal laser scanning microscopy
KW - Pasta regrinds
KW - Semolina-bread
KW - Techno-functional properties
KW - Waste-management
U2 - 10.1016/j.foostr.2021.100230
DO - 10.1016/j.foostr.2021.100230
M3 - Article
AN - SCOPUS:85118495189
SN - 2213-3291
VL - 30
JO - Food Structure
JF - Food Structure
M1 - 100230
ER -