Oxidant-responsive ferrocene-based cyclodextrin complex coacervate core micelles

Camilla Facciotti, Vittorio Saggiomo, Simon van Hurne, Anton Bunschoten, Rebecca Kaup, Aldrik H. Velders*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)

Abstract

Coacervate-core micelles are considered promising materials for several applications, from catalysis to drug delivery. However, oxidant-responsive coacervate-core micelles, able to undergo structural changes upon specific oxidation stimuli, are not well reported. Here, we present a novel ferrocene–dipicolinic acid derivative as redox-responsive subcomponent to be incorporated in cyclodextrin-based coacervate core micelles, C4Ms, with tuneable core structure and responsiveness towards H2O2 treatment. The Fc-C4Ms are formed combining three orthogonal supramolecular interactions, namely (i) metal-to-ligand coordination between europium(III) ions and dipicolinic acid molecules, (ii) host-guest interaction between beta cyclodextrins and ferrocenes and (iii) electrostatic coacervation interaction. The micelle stability against oxidation can be controlled by varying three main parameters: (a) the core-unit structure, from monomeric metal complexes to supramolecular oligomers, (b) the H2O2 equivalents and c) the ratio between redox-responsive and non-redox-responsive bislinker. The H2O2-responsive ferrocene-based systems might have an interesting application, e.g. reactive oxygen species-mediated drug delivery.

Original languageEnglish
Pages (from-to)30-38
JournalSupramolecular Chemistry
Volume32
Issue number1
Early online date5 Nov 2019
DOIs
Publication statusPublished - Feb 2020

Keywords

  • complex coacervate core micelles
  • cyclodextrin
  • ferrocene
  • Host-guest
  • stimuli-responsive

Fingerprint

Dive into the research topics of 'Oxidant-responsive ferrocene-based cyclodextrin complex coacervate core micelles'. Together they form a unique fingerprint.

Cite this