Abstract
Background
With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization.
Results
Leaf and tuber samples were analysed and screened for the presence of conserved and tissue dependent eQTLs. Expression QTLs present in both tissues are predominantly cis-acting whilst for tissue specific QTLs, the percentage of trans-acting QTLs increases. Tissue dependent eQTLs were assigned to functional classes and visualized in metabolic pathways. We identified a potential regulatory network on chromosome 10 involving genes crucial for maintaining circadian rhythms and controlling clock output genes. In addition, we show that the type of genetic material screened and sampling strategy applied, can have a high impact on the output of genetical genomics studies.
Conclusions
Identification of tissue dependent regulatory networks based on mapped differential expression not only gives us insight in tissue dependent gene subfunctionalization but brings new insights into key biological processes and delivers targets for future haplotyping and genetic marker development.
Original language | English |
---|---|
Article number | 17 |
Journal | BMC Plant Biology |
Volume | 12 |
DOIs | |
Publication status | Published - 2012 |
Keywords
- quantitative trait loci
- arabidopsis circadian clock
- pseudo-response regulators
- solanum-tuberosum l.
- gene-expression
- level variation
- genome
- identification
- architecture
- networks
Fingerprint
Dive into the research topics of 'Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source-sink tissues in a segregating potato population'. Together they form a unique fingerprint.Datasets
-
Population LEAF Expression profiling experiment
Kloosterman, B. A. (Creator), Wageningen UR, 2 May 2014
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-808/
Dataset
-
Population Tuber Expression profiling experiment
Kloosterman, B. A. (Creator), Wageningen UR, 2 May 2014
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-701/
Dataset