Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review

Jochem Verrelst*, Gustau Camps-Valls, Jordi Muñoz-Marí, Juan Pablo Rivera, Frank Veroustraete, J.G.P.W. Clevers, José Moreno

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

530 Citations (Scopus)

Abstract

Forthcoming superspectral satellite missions dedicated to land monitoring, as well as planned imaging spectrometers, will unleash an unprecedented data stream. The processing requirements for such large data streams involve processing techniques enabling the spatio-temporally explicit quantification of vegetation properties. Typically retrieval must be accurate, robust and fast. Hence, there is a strict requirement to identify next-generation bio-geophysical variable retrieval algorithms which can be molded into an operational processing chain. This paper offers a review of state-of-the-art retrieval methods for quantitative terrestrial bio-geophysical variable extraction using optical remote sensing imagery. We can categorize these methods into (1) parametric regression, (2) non-parametric regression, (3) physically-based and (4) hybrid methods. Hybrid methods combine generic capabilities of physically-based methods with flexible and computationally efficient methods, typically non-parametric regression methods. A review of the theoretical basis of all these methods is given first and followed by published applications. This paper focusses on: (1) retrievability of bio-geophysical variables, (2) ability to generate multiple outputs, (3) possibilities for model transparency description, (4) mapping speed, and (5) possibilities for uncertainty retrieval. Finally, the prospects of implementing these methods into future processing chains for operational retrieval of vegetation properties are presented and discussed.

Original languageEnglish
Pages (from-to)273-290
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume108
DOIs
Publication statusPublished - 2015

Keywords

  • Bio-geophysical variables
  • Hybrid
  • Machine learning
  • Non-parametric
  • Operational variable retrieval
  • Parametric
  • Physical

Fingerprint

Dive into the research topics of 'Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review'. Together they form a unique fingerprint.

Cite this