Abstract
The aggregation behavior as a function of pH was studied for hydrolysates obtained by hydrolysis of soy protein isolate (SPI) and glycinin- and ß-conglycinin-rich protein fractions with subtilisin Carlsberg. The substrates were hydrolyzed up to degrees of hydrolysis (DH) of 2.2% and 6.5%. Compared with nonhydrolyzed SPI, a decrease in solubility was observed for the hydrolysates of SPI [0.8% (w/v) protein, I¿=¿0.03 M] around neutral pH. At pH 8.0, glycinin hydrolysates had a much lower solubility (~43% and 60%, respectively, for DH 2.2% and 6.5%) than SPI and ß-conglycinin-derived hydrolysates, which were almost completely soluble. Peptides that aggregated were all larger than 5 kDa, and as estimated by size-exclusion chromatography their composition was almost independent of the aggregation pH. The solubility of hydrolysates of SPIs with a varying glycinin and ß-conglycinin composition showed that glycinin-derived peptides are the driving force for the lower solubility of SPI hydrolysates. The solubility of SPI hydrolysates at pH 8.0 was shown not to be the sum of that of glycinin and ß-conglycinin hydrolysates. Assuming that the separate hydrolysis of glycinin and ß-conglycinin did not differ from that in the mixture (SPI), this indicates that ß-conglycinin-derived peptides have the ability to inhibit glycinin-derived peptide aggregation.
Original language | English |
---|---|
Pages (from-to) | 178-188 |
Journal | Food Biophysics |
Volume | 1 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2006 |
Keywords
- heat-induced gelation
- soybean proteins
- structural characteristics
- emulsifying properties
- enzymatic-hydrolysis
- limited proteolysis
- physical-properties
- alpha-lactalbumin
- gel properties
- whey proteins