Abstract
To obtain delta-MnO2 particles with a large specific surface area, MnO2 was synthesized in an ice-water bath using ascorbic acid (AA) to reduce KMnO4. At pH 3 and 5 and KMnO4/AA molar ratios of 8/1 and 10/1, nanoparticles of delta-MnO2 were produced. The specific surface areas (SSAs) of the samples ranged from 163 to 207 m(2)/g. The Mn average oxidation state of the samples ranged from 3.88 to 3.98 and increased with the KMnO4/AA ratio and pH. The adsorption of the samples with respect to metal ion revealed pseudo adsorption capacities of 3425 mmol Pb2+/kg and 1789 mmol Zn2+/kg. The decolorization behaviors of sample S10-5 (produced at pH 5 and KMnO4/AA molar ratios of 10/1) to methylene blue (MB) were compared at different pH values and temperatures. After 120 min at room temperature, 97% of the MB was adsorbed, and approximately 68% was oxidized. The adsorbed amount and the level of oxidation increased with increasing temperature and decreased with increasing pH. (C) 2014 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 1149-1156 |
Journal | Materials Chemistry and Physics |
Volume | 148 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- high-temperature decomposition
- manganese oxide
- structural evolution
- oxidation-state
- layered mno2
- birnessite
- adsorption
- mechanism
- nanobelts
- dissolution