One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl3-Based Silicone Nanofilaments

Sjoerd Slagman, Sidharam P. Pujari, Maurice C.R. Franssen, Han Zuilhof*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Superhydrophobic surfaces gain ever-growing attention because of their applicability in many (consumer) products/materials as they often display, among others, antifouling, anti-icing, and/or self-cleaning properties. A simple way to achieve superhydrophobicity is through the growth of silicone nanofilaments. These nanofilaments, however, are very often nonreactive and thus difficult to utilize in subsequent chemistries. In response, we have developed a single-step procedure to grow (SiHCl3-based) silicone nanofilaments with selective reactivity that are intrinsically superhydrophobic. The silicone nanofilaments could be further functionalized via Pt-catalyzed hydrosilylation of exposed Si-H moieties. These surfaces are easily obtained using mild conditions and are stable under hydrolytic conditions (neutral water, 24 h at 80 °C) while remaining highly transparent, which makes them well suited for optical and photochemical experiments.

Original languageEnglish
Pages (from-to)13505-13513
JournalLangmuir
Volume34
Issue number45
DOIs
Publication statusPublished - 13 Nov 2018

Fingerprint Dive into the research topics of 'One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl<sub>3</sub>-Based Silicone Nanofilaments'. Together they form a unique fingerprint.

  • Cite this